Wang, Jialu
Rapid morphology characterization of two-dimensional TMDs and lateral heterostructures based on deep learning
He, Junqi, Zhang, Yujie, Wang, Jialu, Wang, Tao, Zhang, Pan, Cai, Chengjie, Yang, Jinxing, Lin, Xiao, Yang, Xiaohui
Leveraging advancements in artificial intelligence, we introduce a deep learning-based method for efficiently characterizing heterostructures and 2D materials, specifically MoS 2-MoSe 2 lateral heterostructures and MoS 2 flakes with varying shapes and thicknesses. By utilizing YOLO models, we achieve an accuracy rate of over 94.67% in identifying these materials. Additionally, we explore the application of transfer learning across different materials, which further enhances model performance. This model exhibits robust generalization and anti-interference ability, ensuring reliable results in diverse scenarios. To facilitate practical use, we have developed an application that enables real-time analysis directly from optical microscope images, making the process significantly faster and more cost-effective than traditional methods. This deep learning-driven approach represents a promising tool for the rapid and accurate characterization of 2D materials, opening new avenues for research and development in material science. Keywords 2D material, TMDs, lateral heterostructure, deep learning, instance segmentation, morphology characterization Introduction Two-dimensional (2D) materials have attracted significant attention due to their excellent mechanical, electrical, thermal, and optical properties, making them ideal candidates for next-generation technologies.
Long-Term Fairness Inquiries and Pursuits in Machine Learning: A Survey of Notions, Methods, and Challenges
Gohar, Usman, Tang, Zeyu, Wang, Jialu, Zhang, Kun, Spirtes, Peter L., Liu, Yang, Cheng, Lu
While dynamic influential roles in high-stake domains traditionally steered fairness aligns with this concept by considering by human judgments, an extensive body of research has evolving dynamics over time (Li et al. 2023), long-term fairness brought attention to the challenges of bias and discrimination has a much broader scope. This umbrella term has different against marginalized groups (Mehrabi et al. 2021; facets, including sequential fairness (where sequential Cheng, Varshney, and Liu 2021). These issues are pervasive decisions impact fairness) and fairness over multiple time and manifest in different settings, including finance, steps, among others (as depicted in Fig:1). In this work, we legal (e.g., pretrial bail decisions), aviation, and healthcare aim to unify the different strands of literature on long-term practices, among others (Gohar et al. 2024; Barocas, Hardt, fairness under a common framework.
Fairness Without Harm: An Influence-Guided Active Sampling Approach
Pang, Jinlong, Wang, Jialu, Zhu, Zhaowei, Yao, Yuanshun, Qian, Chen, Liu, Yang
The pursuit of fairness in machine learning (ML), ensuring that the models do not exhibit biases toward protected demographic groups, typically results in a compromise scenario. This compromise can be explained by a Pareto frontier where given certain resources (e.g., data), reducing the fairness violations often comes at the cost of lowering the model accuracy. In this work, we aim to train models that mitigate group fairness disparity without causing harm to model accuracy. Intuitively, acquiring more data is a natural and promising approach to achieve this goal by reaching a better Pareto frontier of the fairness-accuracy tradeoff. The current data acquisition methods, such as fair active learning approaches, typically require annotating sensitive attributes. However, these sensitive attribute annotations should be protected due to privacy and safety concerns. In this paper, we propose a tractable active data sampling algorithm that does not rely on training group annotations, instead only requiring group annotations on a small validation set. Specifically, the algorithm first scores each new example by its influence on fairness and accuracy evaluated on the validation dataset, and then selects a certain number of examples for training. We theoretically analyze how acquiring more data can improve fairness without causing harm, and validate the possibility of our sampling approach in the context of risk disparity. We also provide the upper bound of generalization error and risk disparity as well as the corresponding connections. Extensive experiments on real-world data demonstrate the effectiveness of our proposed algorithm.
Unmasking and Improving Data Credibility: A Study with Datasets for Training Harmless Language Models
Zhu, Zhaowei, Wang, Jialu, Cheng, Hao, Liu, Yang
Language models have shown promise in various tasks but can be affected by undesired data during training, fine-tuning, or alignment. For example, if some unsafe conversations are wrongly annotated as safe ones, the model fine-tuned on these samples may be harmful. Therefore, the correctness of annotations, i.e., the credibility of the dataset, is important. This study focuses on the credibility of real-world datasets, including the popular benchmarks Jigsaw Civil Comments, Anthropic Harmless & Red Team, PKU BeaverTails & SafeRLHF, that can be used for training a harmless language model. Given the cost and difficulty of cleaning these datasets by humans, we introduce a systematic framework for evaluating the credibility of datasets, identifying label errors, and evaluating the influence of noisy labels in the curated language data, specifically focusing on unsafe comments and conversation classification. With the framework, we find and fix an average of 6.16% label errors in 11 datasets constructed from the above benchmarks. The data credibility and downstream learning performance can be remarkably improved by directly fixing label errors, indicating the significance of cleaning existing real-world datasets. Open-source: https://github.com/Docta-ai/docta.
Procedural Fairness Through Decoupling Objectionable Data Generating Components
Tang, Zeyu, Wang, Jialu, Liu, Yang, Spirtes, Peter, Zhang, Kun
We reveal and address the frequently overlooked yet important issue of disguised procedural unfairness, namely, the potentially inadvertent alterations on the behavior of neutral (i.e., not problematic) aspects of data generating process, and/or the lack of procedural assurance of the greatest benefit of the least advantaged individuals. Inspired by John Rawls's advocacy for pure procedural justice (Rawls, 1971, 2001), we view automated decision-making as a microcosm of social institutions, and consider how the data generating process itself can satisfy the requirements of procedural fairness. We propose a framework that decouples the objectionable data generating components from the neutral ones by utilizing reference points and the associated value instantiation rule. Our findings highlight the necessity of preventing disguised procedural unfairness, drawing attention not only to the objectionable data generating components that we aim to mitigate, but also more importantly, to the neutral components that we intend to keep unaffected.
Parameter-Efficient Cross-lingual Transfer of Vision and Language Models via Translation-based Alignment
Zhang, Zhen, Wang, Jialu, Wang, Xin Eric
Pre-trained vision and language models such as CLIP have witnessed remarkable success in connecting images and texts with a primary focus on English texts. Despite recent efforts to extend CLIP to support other languages, disparities in performance among different languages have been observed due to uneven resource availability. Additionally, current cross-lingual transfer methods of those pre-trained models would consume excessive resources for a large number of languages. Therefore, we propose a new parameter-efficient cross-lingual transfer learning framework that utilizes a translation-based alignment method to mitigate multilingual disparities and explores parameter-efficient fine-tuning methods for parameter-efficient cross-lingual transfer. Extensive experiments on XTD and Multi30K datasets, covering 11 languages under zero-shot, few-shot, and full-dataset learning scenarios, show that our framework significantly reduces the multilingual disparities among languages and improves cross-lingual transfer results, especially in low-resource scenarios, while only keeping and fine-tuning an extremely small number of parameters compared to the full model (e.g., Our framework only requires 0.16\% additional parameters of a full-model for each language in the few-shot learning scenario). The codes are available at \url{https://github.com/eric-ai-lab/PECTVLM}. The codes are available at \url{https://github.com/eric-ai-lab/PECTVLM}.
T2IAT: Measuring Valence and Stereotypical Biases in Text-to-Image Generation
Wang, Jialu, Liu, Xinyue Gabby, Di, Zonglin, Liu, Yang, Wang, Xin Eric
Warning: This paper contains several contents that may be toxic, harmful, or offensive. In the last few years, text-to-image generative models have gained remarkable success in generating images with unprecedented quality accompanied by a breakthrough of inference speed. Despite their rapid progress, human biases that manifest in the training examples, particularly with regard to common stereotypical biases, like gender and skin tone, still have been found in these generative models. In this work, we seek to measure more complex human biases exist in the task of text-to-image generations. Inspired by the well-known Implicit Association Test (IAT) from social psychology, we propose a novel Text-to-Image Association Test (T2IAT) framework that quantifies the implicit stereotypes between concepts and valence, and those in the images. We replicate the previously documented bias tests on generative models, including morally neutral tests on flowers and insects as well as demographic stereotypical tests on diverse social attributes. The results of these experiments demonstrate the presence of complex stereotypical behaviors in image generations.
Deep Learning based Multi-Label Image Classification of Protest Activities
Lu, Yingzhou, Sato, Kosaku, Wang, Jialu
With the rise of internet technology amidst increasing rates of urbanization, sharing information has never been easier thanks to globally-adopted platforms for digital communication. The resulting output of massive amounts of user-generated data can be used to enhance our understanding of significant societal issues particularly for urbanizing areas. In order to better analyze protest behavior, we enhanced the GSR dataset and manually labeled all the images. We used deep learning techniques to analyze social media data to detect social unrest through image classification, which performed good in predict multi-attributes, then also used map visualization to display protest behaviors across the country.
Fairness Transferability Subject to Bounded Distribution Shift
Chen, Yatong, Raab, Reilly, Wang, Jialu, Liu, Yang
Given an algorithmic predictor that is "fair" on some source distribution, will it still be fair on an unknown target distribution that differs from the source within some bound? In this paper, we study the transferability of statistical group fairness for machine learning predictors (i.e., classifiers or regressors) subject to bounded distribution shifts. Such shifts may be introduced by initial training data uncertainties, user adaptation to a deployed predictor, dynamic environments, or the use of pre-trained models in new settings. Herein, we develop a bound that characterizes such transferability, flagging potentially inappropriate deployments of machine learning for socially consequential tasks. We first develop a framework for bounding violations of statistical fairness subject to distribution shift, formulating a generic upper bound for transferred fairness violations as our primary result. We then develop bounds for specific worked examples, focusing on two commonly used fairness definitions (i.e., demographic parity and equalized odds) and two classes of distribution shift (i.e., covariate shift and label shift). Finally, we compare our theoretical bounds to deterministic models of distribution shift and against real-world data, finding that we are able to estimate fairness violation bounds in practice, even when simplifying assumptions are only approximately satisfied.
Can Less be More? When Increasing-to-Balancing Label Noise Rates Considered Beneficial
Liu, Yang, Wang, Jialu
In this paper, we answer the question when inserting label noise (less informative labels) can instead return us more accurate and fair models. We are primarily inspired by two observations that 1) increasing a certain class of instances' label noise to balance the noise rates (increasing-to-balancing) results in an easier learning problem; 2) Increasing-to-balancing improves fairness guarantees against label bias. In this paper, we will first quantify the trade-offs introduced by increasing a certain group of instances' label noise rate w.r.t. the learning difficulties and performance guarantees. We analytically demonstrate when such an increase proves to be beneficial, in terms of either improved generalization errors or the fairness guarantees. Then we present a method to leverage our idea of inserting label noise for the task of learning with noisy labels, either without or with a fairness constraint. The primary technical challenge we face is due to the fact that we would not know which data instances are suffering from higher noise, and we would not have the ground truth labels to verify any possible hypothesis. We propose a detection method that informs us which group of labels might suffer from higher noise, without using ground truth information. We formally establish the effectiveness of the proposed solution and demonstrate it with extensive experiments.