Not enough data to create a plot.
Try a different view from the menu above.
Wang, Jiacheng
Why is the winner the best?
Eisenmann, Matthias, Reinke, Annika, Weru, Vivienn, Tizabi, Minu Dietlinde, Isensee, Fabian, Adler, Tim J., Ali, Sharib, Andrearczyk, Vincent, Aubreville, Marc, Baid, Ujjwal, Bakas, Spyridon, Balu, Niranjan, Bano, Sophia, Bernal, Jorge, Bodenstedt, Sebastian, Casella, Alessandro, Cheplygina, Veronika, Daum, Marie, de Bruijne, Marleen, Depeursinge, Adrien, Dorent, Reuben, Egger, Jan, Ellis, David G., Engelhardt, Sandy, Ganz, Melanie, Ghatwary, Noha, Girard, Gabriel, Godau, Patrick, Gupta, Anubha, Hansen, Lasse, Harada, Kanako, Heinrich, Mattias, Heller, Nicholas, Hering, Alessa, Huaulmé, Arnaud, Jannin, Pierre, Kavur, Ali Emre, Kodym, Oldřich, Kozubek, Michal, Li, Jianning, Li, Hongwei, Ma, Jun, Martín-Isla, Carlos, Menze, Bjoern, Noble, Alison, Oreiller, Valentin, Padoy, Nicolas, Pati, Sarthak, Payette, Kelly, Rädsch, Tim, Rafael-Patiño, Jonathan, Bawa, Vivek Singh, Speidel, Stefanie, Sudre, Carole H., van Wijnen, Kimberlin, Wagner, Martin, Wei, Donglai, Yamlahi, Amine, Yap, Moi Hoon, Yuan, Chun, Zenk, Maximilian, Zia, Aneeq, Zimmerer, David, Aydogan, Dogu Baran, Bhattarai, Binod, Bloch, Louise, Brüngel, Raphael, Cho, Jihoon, Choi, Chanyeol, Dou, Qi, Ezhov, Ivan, Friedrich, Christoph M., Fuller, Clifton, Gaire, Rebati Raman, Galdran, Adrian, Faura, Álvaro García, Grammatikopoulou, Maria, Hong, SeulGi, Jahanifar, Mostafa, Jang, Ikbeom, Kadkhodamohammadi, Abdolrahim, Kang, Inha, Kofler, Florian, Kondo, Satoshi, Kuijf, Hugo, Li, Mingxing, Luu, Minh Huan, Martinčič, Tomaž, Morais, Pedro, Naser, Mohamed A., Oliveira, Bruno, Owen, David, Pang, Subeen, Park, Jinah, Park, Sung-Hong, Płotka, Szymon, Puybareau, Elodie, Rajpoot, Nasir, Ryu, Kanghyun, Saeed, Numan, Shephard, Adam, Shi, Pengcheng, Štepec, Dejan, Subedi, Ronast, Tochon, Guillaume, Torres, Helena R., Urien, Helene, Vilaça, João L., Wahid, Kareem Abdul, Wang, Haojie, Wang, Jiacheng, Wang, Liansheng, Wang, Xiyue, Wiestler, Benedikt, Wodzinski, Marek, Xia, Fangfang, Xie, Juanying, Xiong, Zhiwei, Yang, Sen, Yang, Yanwu, Zhao, Zixuan, Maier-Hein, Klaus, Jäger, Paul F., Kopp-Schneider, Annette, Maier-Hein, Lena
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a solution superior to a competing method? To address this gap in the literature, we performed a multi-center study with all 80 competitions that were conducted in the scope of IEEE ISBI 2021 and MICCAI 2021. Statistical analyses performed based on comprehensive descriptions of the submitted algorithms linked to their rank as well as the underlying participation strategies revealed common characteristics of winning solutions. These typically include the use of multi-task learning (63%) and/or multi-stage pipelines (61%), and a focus on augmentation (100%), image preprocessing (97%), data curation (79%), and postprocessing (66%). The "typical" lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning. Two core general development strategies stood out for highly-ranked teams: the reflection of the metrics in the method design and the focus on analyzing and handling failure cases. According to the organizers, 43% of the winning algorithms exceeded the state of the art but only 11% completely solved the respective domain problem. The insights of our study could help researchers (1) improve algorithm development strategies when approaching new problems, and (2) focus on open research questions revealed by this work.
Guiding AI-Generated Digital Content with Wireless Perception
Wang, Jiacheng, Du, Hongyang, Niyato, Dusit, Xiong, Zehui, Kang, Jiawen, Mao, Shiwen, Xuemin, null, Shen, null
Recent advances in artificial intelligence (AI), coupled with a surge in training data, have led to the widespread use of AI for digital content generation, with ChatGPT serving as a representative example. Despite the increased efficiency and diversity, the inherent instability of AI models poses a persistent challenge in guiding these models to produce the desired content for users. In this paper, we introduce an integration of wireless perception (WP) with AI-generated content (AIGC) and propose a unified WP-AIGC framework to improve the quality of digital content production. The framework employs a novel multi-scale perception technology to read user's posture, which is difficult to describe accurately in words, and transmits it to the AIGC model as skeleton images. Based on these images and user's service requirements, the AIGC model generates corresponding digital content. Since the production process imposes the user's posture as a constraint on the AIGC model, it makes the generated content more aligned with the user's requirements. Additionally, WP-AIGC can also accept user's feedback, allowing adjustment of computing resources at edge server to improve service quality. Experiments results verify the effectiveness of the WP-AIGC framework, highlighting its potential as a novel approach for guiding AI models in the accurate generation of digital content.
Self-Supervised CSF Inpainting with Synthetic Atrophy for Improved Accuracy Validation of Cortical Surface Analyses
Wang, Jiacheng, Larson, Kathleen E., Oguz, Ipek
Accuracy validation of cortical thickness measurement is a difficult problem due to the lack of ground truth data. To address this need, many methods have been developed to synthetically induce gray matter (GM) atrophy in an MRI via deformable registration, creating a set of images with known changes in cortical thickness. However, these methods often cause blurring in atrophied regions, and cannot simulate realistic atrophy within deep sulci where cerebrospinal fluid (CSF) is obscured or absent. In this paper, we present a solution using a self-supervised inpainting model to generate CSF in these regions and create images with more plausible GM/CSF boundaries. Specifically, we introduce a novel, 3D GAN model that incorporates patch-based dropout training, edge map priors, and sinusoidal positional encoding, all of which are established methods previously limited to 2D domains. We show that our framework significantly improves the quality of the resulting synthetic images and is adaptable to unseen data with fine-tuning. We also demonstrate that our resulting dataset can be employed for accuracy validation of cortical segmentation and thickness measurement.
SSL^2: Self-Supervised Learning meets Semi-Supervised Learning: Multiple Sclerosis Segmentation in 7T-MRI from large-scale 3T-MRI
Wang, Jiacheng, Li, Hao, Liu, Han, Hu, Dewei, Lu, Daiwei, Yoon, Keejin, Barter, Kelsey, Bagnato, Francesca, Oguz, Ipek
Automated segmentation of multiple sclerosis (MS) lesions from MRI scans is important to quantify disease progression. In recent years, convolutional neural networks (CNNs) have shown top performance for this task when a large amount of labeled data is available. However, the accuracy of CNNs suffers when dealing with few and/or sparsely labeled datasets. A potential solution is to leverage the information available in large public datasets in conjunction with a target dataset which only has limited labeled data. In this paper, we propose a training framework, SSL2 (self-supervised-semi-supervised), for multi-modality MS lesion segmentation with limited supervision. We adopt self-supervised learning to leverage the knowledge from large public 3T datasets to tackle the limitations of a small 7T target dataset. To leverage the information from unlabeled 7T data, we also evaluate state-of-the-art semi-supervised methods for other limited annotation settings, such as small labeled training size and sparse annotations. We use the shifted-window (Swin) transformer1 as our backbone network. The effectiveness of self-supervised and semi-supervised training strategies is evaluated in our in-house 7T MRI dataset. The results indicate that each strategy improves lesion segmentation for both limited training data size and for sparse labeling scenarios. The combined overall framework further improves the performance substantially compared to either of its components alone. Our proposed framework thus provides a promising solution for future data/label-hungry 7T MS studies.
Exploring Attention-Aware Network Resource Allocation for Customized Metaverse Services
Du, Hongyang, Wang, Jiacheng, Niyato, Dusit, Kang, Jiawen, Xiong, Zehui, Xuemin, null, Shen, null, Kim, Dong In
Emerging with the support of computing and communications technologies, Metaverse is expected to bring users unprecedented service experiences. However, the increase in the number of Metaverse users places a heavy demand on network resources, especially for Metaverse services that are based on graphical extended reality and require rendering a plethora of virtual objects. To make efficient use of network resources and improve the Quality-of-Experience (QoE), we design an attention-aware network resource allocation scheme to achieve customized Metaverse services. The aim is to allocate more network resources to virtual objects in which users are more interested. We first discuss several key techniques related to Metaverse services, including QoE analysis, eye-tracking, and remote rendering. We then review existing datasets and propose the user-object-attention level (UOAL) dataset that contains the ground truth attention of 30 users to 96 objects in 1,000 images. A tutorial on how to use UOAL is presented. With the help of UOAL, we propose an attention-aware network resource allocation algorithm that has two steps, i.e., attention prediction and QoE maximization. Specially, we provide an overview of the designs of two types of attention prediction methods, i.e., interest-aware and time-aware prediction. By using the predicted user-object-attention values, network resources such as the rendering capacity of edge devices can be allocated optimally to maximize the QoE. Finally, we propose promising research directions related to Metaverse services.
Meta-Learning for Natural Language Understanding under Continual Learning Framework
Wang, Jiacheng, Fan, Yong, Jiang, Duo, Li, Shiqing
Neural network has been recognized with its accomplishments on tackling various natural language understanding (NLU) tasks. Methods have been developed to train a robust model to handle multiple tasks to gain a general representation of text. In this paper, we implement the model-agnostic meta-learning (MAML) and Online aware Meta-learning (OML) meta-objective under the continual framework for NLU tasks. We validate our methods on selected SuperGLUE and GLUE benchmark.
Sparse Linear Discriminant Analysis under the Neyman-Pearson Paradigm
Tong, Xin, Xia, Lucy, Wang, Jiacheng, Feng, Yang
In classification applications such as severe disease diagnosis and fraud detection, people have clear priorities over the two types of classification errors. For instance, diagnosing a patient with cancer to be healthy may lead to loss of life, which incurs a much higher cost than the other way around. The classical binary classification paradigm does not take into account such priorities, as it aims to minimize the overall classification error. In contrast, the Neyman-Pearson (NP) paradigm seeks classifiers with a minimal type II error while having the prioritized type I error constrained under a user-specified level, addressing asymmetric type I/II error priorities in the previously mentioned scenarios. Despite recent advances in the NP classification literature, two essential issues pose challenges: i) current theoretical framework assumes bounded feature support, which does not admit parametric settings; ii) in practice, existing NP classifiers involve splitting class 0 samples into two parts using a pre-fixed split proportion. To address the first challenge, we present NP-sLDA that adapts the popular sparse linear discriminant analysis (sLDA, Mai et al. (2012)) to the NP paradigm. On the theoretical front, this is the first theoretically justified NP classifier that takes parametric assumptions and unbounded feature support. We formulate a new conditional margin assumption and a new conditional detection condition to accommodate unbounded feature support and show that NP-sLDA satisfies the NP oracle inequalities. Numerical results show that NP-sLDA is a valuable addition to the existing NP classifiers. To address the second challenge, we construct a general data-adaptive sample splitting scheme that improves the classification performance upon the default half-half class 0 split used in Tong et al. (2018).