Wang, Huijie
AgiBot World Colosseo: A Large-scale Manipulation Platform for Scalable and Intelligent Embodied Systems
AgiBot-World-Contributors, null, Bu, Qingwen, Cai, Jisong, Chen, Li, Cui, Xiuqi, Ding, Yan, Feng, Siyuan, Gao, Shenyuan, He, Xindong, Huang, Xu, Jiang, Shu, Jiang, Yuxin, Jing, Cheng, Li, Hongyang, Li, Jialu, Liu, Chiming, Liu, Yi, Lu, Yuxiang, Luo, Jianlan, Luo, Ping, Mu, Yao, Niu, Yuehan, Pan, Yixuan, Pang, Jiangmiao, Qiao, Yu, Ren, Guanghui, Ruan, Cheng, Shan, Jiaqi, Shen, Yongjian, Shi, Chengshi, Shi, Mingkang, Shi, Modi, Sima, Chonghao, Song, Jianheng, Wang, Huijie, Wang, Wenhao, Wei, Dafeng, Xie, Chengen, Xu, Guo, Yan, Junchi, Yang, Cunbiao, Yang, Lei, Yang, Shukai, Yao, Maoqing, Zeng, Jia, Zhang, Chi, Zhang, Qinglin, Zhao, Bin, Zhao, Chengyue, Zhao, Jiaqi, Zhu, Jianchao
We explore how scalable robot data can address real-world challenges for generalized robotic manipulation. Introducing AgiBot World, a large-scale platform comprising over 1 million trajectories across 217 tasks in five deployment scenarios, we achieve an order-of-magnitude increase in data scale compared to existing datasets. Accelerated by a standardized collection pipeline with human-in-the-loop verification, AgiBot World guarantees high-quality and diverse data distribution. It is extensible from grippers to dexterous hands and visuo-tactile sensors for fine-grained skill acquisition. Building on top of data, we introduce Genie Operator-1 (GO-1), a novel generalist policy that leverages latent action representations to maximize data utilization, demonstrating predictable performance scaling with increased data volume. Policies pre-trained on our dataset achieve an average performance improvement of 30% over those trained on Open X-Embodiment, both in in-domain and out-of-distribution scenarios. GO-1 exhibits exceptional capability in real-world dexterous and long-horizon tasks, achieving over 60% success rate on complex tasks and outperforming prior RDT approach by 32%. By open-sourcing the dataset, tools, and models, we aim to democratize access to large-scale, high-quality robot data, advancing the pursuit of scalable and general-purpose intelligence.
Application of a Dense Fusion Attention Network in Fault Diagnosis of Centrifugal Fan
Wang, Ruijun, Liu, Yuan, Fan, Zhixia, Xu, Xiaogang, Wang, Huijie
Although the deep learning recognition model has been widely used in the condition monitoring of rotating machinery. However, it is still a challenge to understand the correspondence between the structure and function of the model and the diagnosis process. Therefore, this paper discusses embedding distributed attention modules into dense connections instead of traditional dense cascading operations. It not only decouples the influence of space and channel on fault feature adaptive recalibration feature weights, but also forms a fusion attention function. The proposed dense fusion focuses on the visualization of the network diagnosis process, which increases the interpretability of model diagnosis. How to continuously and effectively integrate different functions to enhance the ability to extract fault features and the ability to resist noise is answered. Centrifugal fan fault data is used to verify this network. Experimental results show that the network has stronger diagnostic performance than other advanced fault diagnostic models.