Goto

Collaborating Authors

 Wang, Hongyu


GARAD-SLAM: 3D GAussian splatting for Real-time Anti Dynamic SLAM

arXiv.org Artificial Intelligence

The 3D Gaussian Splatting (3DGS)-based SLAM system has garnered widespread attention due to its excellent performance in real-time high-fidelity rendering. However, in real-world environments with dynamic objects, existing 3DGS-based SLAM systems often face mapping errors and tracking drift issues. To address these problems, we propose GARAD-SLAM, a real-time 3DGS-based SLAM system tailored for dynamic scenes. In terms of tracking, unlike traditional methods, we directly perform dynamic segmentation on Gaussians and map them back to the front-end to obtain dynamic point labels through a Gaussian pyramid network, achieving precise dynamic removal and robust tracking. For mapping, we impose rendering penalties on dynamically labeled Gaussians, which are updated through the network, to avoid irreversible erroneous removal caused by simple pruning. Our results on real-world datasets demonstrate that our method is competitive in tracking compared to baseline methods, generating fewer artifacts and higher-quality reconstructions in rendering.


Bitnet.cpp: Efficient Edge Inference for Ternary LLMs

arXiv.org Artificial Intelligence

The advent of 1-bit large language models (LLMs), led by BitNet b1.58, has spurred interest in ternary LLMs. Despite this, research and practical applications focusing on efficient edge inference for ternary LLMs remain scarce. To bridge this gap, we introduce Bitnet.cpp, an inference system optimized for BitNet b1.58 and ternary LLMs. Given that mixed-precision matrix multiplication (mpGEMM) constitutes the bulk of inference time in ternary LLMs, Bitnet.cpp incorporates a novel mpGEMM library to facilitate sub-2-bits-per-weight, efficient and lossless inference. The library features two core solutions: Ternary Lookup Table (TL), which addresses spatial inefficiencies of previous bit-wise methods, and Int2 with a Scale (I2_S), which ensures lossless edge inference, both enabling high-speed inference. Our experiments show that Bitnet.cpp achieves up to a 6.25x increase in speed over full-precision baselines and up to 2.32x over low-bit baselines, setting new benchmarks in the field. Additionally, we expand TL to element-wise lookup table (ELUT) for low-bit LLMs in the appendix, presenting both theoretical and empirical evidence of its considerable potential. Bitnet.cpp is publicly available at https://github.com/microsoft/BitNet/tree/paper , offering a sophisticated solution for the efficient and practical deployment of edge LLMs.


Robotic Programmer: Video Instructed Policy Code Generation for Robotic Manipulation

arXiv.org Artificial Intelligence

Zero-shot generalization across various robots, tasks and environments remains a significant challenge in robotic manipulation. Policy code generation methods use executable code to connect high-level task descriptions and low-level action sequences, leveraging the generalization capabilities of large language models and atomic skill libraries. In this work, we propose Robotic Programmer (RoboPro), a robotic foundation model, enabling the capability of perceiving visual information and following free-form instructions to perform robotic manipulation with policy code in a zero-shot manner. To address low efficiency and high cost in collecting runtime code data for robotic tasks, we devise Video2Code to synthesize executable code from extensive videos in-the-wild with off-the-shelf vision-language model and code-domain large language model. Extensive experiments show that RoboPro achieves the state-of-the-art zero-shot performance on robotic manipulation in both simulators and real-world environments. Specifically, the zero-shot success rate of RoboPro on RLBench surpasses the state-of-the-art model GPT-4o by 11.6%, which is even comparable to a strong supervised training baseline. Furthermore, RoboPro is robust to variations on API formats and skill sets.


MTS-UNMixers: Multivariate Time Series Forecasting via Channel-Time Dual Unmixing

arXiv.org Artificial Intelligence

Multivariate time series data provide a robust framework for future predictions by leveraging information across multiple dimensions, ensuring broad applicability in practical scenarios. However, their high dimensionality and mixing patterns pose significant challenges in establishing an interpretable and explicit mapping between historical and future series, as well as extracting long-range feature dependencies. To address these challenges, we propose a channel-time dual unmixing network for multivariate time series forecasting (named MTS-UNMixer), which decomposes the entire series into critical bases and coefficients across both the time and channel dimensions. This approach establishes a robust sharing mechanism between historical and future series, enabling accurate representation and enhancing physical interpretability. Specifically, MTS-UNMixers represent sequences over time as a mixture of multiple trends and cycles, with the time-correlated representation coefficients shared across both historical and future time periods. In contrast, sequence over channels can be decomposed into multiple tick-wise bases, which characterize the channel correlations and are shared across the whole series. To estimate the shared time-dependent coefficients, a vanilla Mamba network is employed, leveraging its alignment with directional causality. Conversely, a bidirectional Mamba network is utilized to model the shared channel-correlated bases, accommodating noncausal relationships. Experimental results show that MTS-UNMixers significantly outperform existing methods on multiple benchmark datasets. The code is available at https://github.com/ZHU-0108/MTS-UNMixers.


BitNet a4.8: 4-bit Activations for 1-bit LLMs

arXiv.org Artificial Intelligence

Recent research on the 1-bit Large Language Models (LLMs), such as BitNet b1.58, presents a promising direction for reducing the inference cost of LLMs while maintaining their performance. In this work, we introduce BitNet a4.8, enabling 4-bit activations for 1-bit LLMs. BitNet a4.8 employs a hybrid quantization and sparsification strategy to mitigate the quantization errors introduced by the outlier channels. Specifically, we utilize 4-bit activations for inputs to the attention and feed-forward network layers, while sparsifying intermediate states followed with 8-bit quantization. Extensive experiments demonstrate that BitNet a4.8 achieves performance comparable to BitNet b1.58 with equivalent training costs, while being faster in inference with enabling 4-bit (INT4/FP4) kernels. Additionally, BitNet a4.8 activates only 55% of parameters and supports 3-bit KV cache, further enhancing the efficiency of large-scale LLM deployment and inference.


1-bit AI Infra: Part 1.1, Fast and Lossless BitNet b1.58 Inference on CPUs

arXiv.org Artificial Intelligence

Recent advances in 1-bit Large Language Models (LLMs), such as BitNet and BitNet b1.58, present a promising approach to enhancing the efficiency of LLMs in terms of speed and energy consumption. These developments also enable local LLM deployment across a broad range of devices. In this work, we introduce bitnet.cpp, a tailored software stack designed to unlock the full potential of 1-bit LLMs. Specifically, we develop a set of kernels to support fast and lossless inference of ternary BitNet b1.58 LLMs on CPUs. Extensive experiments demonstrate that bitnet.cpp achieves significant speedups, ranging from 2.37x to 6.17x on x86 CPUs and from 1.37x to 5.07x on ARM CPUs, across various model sizes. The code is available at https://github.com/microsoft/BitNet.


Q-Sparse: All Large Language Models can be Fully Sparsely-Activated

arXiv.org Artificial Intelligence

We introduce, Q-Sparse, a simple yet effective approach to training sparsely-activated large language models (LLMs). Q-Sparse enables full sparsity of activations in LLMs which can bring significant efficiency gains in inference. This is achieved by applying top-K sparsification to the activations and the straight-through-estimator to the training. The key results from this work are, (1) Q-Sparse can achieve results comparable to those of baseline LLMs while being much more efficient at inference time; (2) We present an inference-optimal scaling law for sparsely-activated LLMs; (3) Q-Sparse is effective in different settings, including training-from-scratch, continue-training of off-the-shelf LLMs, and finetuning; (4) Q-Sparse works for both full-precision and 1-bit LLMs (e.g., BitNet b1.58). Particularly, the synergy of BitNet b1.58 and Q-Sparse (can be equipped with MoE) provides the cornerstone and a clear path to revolutionize the efficiency, including cost and energy consumption, of future LLMs.


NGM-SLAM: Gaussian Splatting SLAM with Radiance Field Submap

arXiv.org Artificial Intelligence

SLAM systems based on Gaussian Splatting have garnered attention due to their capabilities for rapid real-time rendering and high-fidelity mapping. However, current Gaussian Splatting SLAM systems usually struggle with large scene representation and lack effective loop closure detection. To address these issues, we introduce NGM-SLAM, the first 3DGS based SLAM system that utilizes neural radiance field submaps for progressive scene expression, effectively integrating the strengths of neural radiance fields and 3D Gaussian Splatting. We utilize neural radiance field submaps as supervision and achieve high-quality scene expression and online loop closure adjustments through Gaussian rendering of fused submaps. Our results on multiple real-world scenes and large-scale scene datasets demonstrate that our method can achieve accurate hole filling and high-quality scene expression, supporting monocular, stereo, and RGB-D inputs, and achieving state-of-the-art scene reconstruction and tracking performance.


M4U: Evaluating Multilingual Understanding and Reasoning for Large Multimodal Models

arXiv.org Artificial Intelligence

Multilingual multimodal reasoning is a core component in achieving human-level intelligence. However, most existing benchmarks for multilingual multimodal reasoning struggle to differentiate between models of varying performance; even language models without visual capabilities can easily achieve high scores. This leaves a comprehensive evaluation of leading multilingual multimodal models largely unexplored. In this work, we introduce M4U, a novel and challenging benchmark for assessing the capability of multi-discipline multilingual multimodal understanding and reasoning. M4U contains 8,931 samples covering 64 disciplines across 16 subfields in Science, Engineering, and Healthcare in Chinese, English, and German. Using M4U, we conduct extensive evaluations of 21 leading Large Multimodal Models (LMMs) and Large Language Models (LLMs) with external tools. The evaluation results show that the state-of-the-art model, GPT-4o, achieves only 47.6% average accuracy on M4U. Additionally, we observe that the leading LMMs exhibit significant language preferences. Our in-depth analysis indicates that leading LMMs, including GPT-4o, suffer performance degradation when prompted with cross-lingual multimodal questions, such as images with key textual information in Chinese while the question is in German. We believe that M4U can serve as a crucial tool for systematically evaluating LMMs based on their multilingual multimodal reasoning capabilities and monitoring their development. The homepage, codes and data are public available.


Prompt-Guided Generation of Structured Chest X-Ray Report Using a Pre-trained LLM

arXiv.org Artificial Intelligence

Medical report generation automates radiology descriptions from images, easing the burden on physicians and minimizing errors. However, current methods lack structured outputs and physician interactivity for clear, clinically relevant reports. Our method introduces a prompt-guided approach to generate structured chest X-ray reports using a pre-trained large language model (LLM). First, we identify anatomical regions in chest X-rays to generate focused sentences that center on key visual elements, thereby establishing a structured report foundation with anatomy-based sentences. We also convert the detected anatomy into textual prompts conveying anatomical comprehension to the LLM. Additionally, the clinical context prompts guide the LLM to emphasize interactivity and clinical requirements. By integrating anatomy-focused sentences and anatomy/clinical prompts, the pre-trained LLM can generate structured chest X-ray reports tailored to prompted anatomical regions and clinical contexts. We evaluate using language generation and clinical effectiveness metrics, demonstrating strong performance.