Goto

Collaborating Authors

 Wang, Hongpeng


A Predictive Cooperative Collision Avoidance for Multi-Robot Systems Using Control Barrier Function

arXiv.org Artificial Intelligence

Control barrier function (CBF)-based methods provide the minimum modification necessary to formally guarantee safety in the context of quadratic programming, and strict safety guarantee for safety critical systems. However, most CBF-related derivatives myopically focus on present safety at each time step, a reasoning over a look-ahead horizon is exactly missing. In this paper, a predictive safety matrix is constructed. We then consolidate the safety condition based on the smallest eigenvalue of the proposed safety matrix. A predefined deconfliction strategy of motion paths is embedded into the trajectory tracking module to manage deadlock conflicts, which computes the deadlock escape velocity with the minimum attitude angle. Comparison results show that the introduction of the predictive term is robust for measurement uncertainty and is immune to oscillations. The proposed deadlock avoidance method avoids a large detour, without obvious stagnation.


Collision Risk Quantification and Conflict Resolution in Trajectory Tracking for Acceleration-Actuated Multi-Robot Systems

arXiv.org Artificial Intelligence

One of the pivotal challenges in a multi-robot system is how to give attention to accuracy and efficiency while ensuring safety. Prior arts cannot strictly guarantee collision-free for an arbitrarily large number of robots or the results are considerably conservative. Smoothness of the avoidance trajectory also needs to be further optimized. This paper proposes an accelerationactuated simultaneous obstacle avoidance and trajectory tracking method for arbitrarily large teams of robots, that provides a nonconservative collision avoidance strategy and gives approaches for deadlock avoidance. We propose two ways of deadlock resolution, one involves incorporating an auxiliary velocity vector into the error function of the trajectory tracking module, which is proven to have no influence on global convergence of the tracking error. Furthermore, unlike the traditional methods that they address conflicts after a deadlock occurs, our decision-making mechanism avoids the near-zero velocity, which is much more safer and efficient in crowed environments. Extensive comparison show that the proposed method is superior to the existing studies when deployed in a large-scale robot system, with minimal invasiveness.