Goto

Collaborating Authors

 Wang, Haofen


ReSearch: Learning to Reason with Search for LLMs via Reinforcement Learning

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have shown remarkable capabilities in reasoning, exemplified by the success of OpenAI-o1 and DeepSeek-R1. However, integrating reasoning with external search processes remains challenging, especially for complex multi-hop questions requiring multiple retrieval steps. We propose ReSearch, a novel framework that trains LLMs to Reason with Search via reinforcement learning without using any supervised data on reasoning steps. Our approach treats search operations as integral components of the reasoning chain, where when and how to perform searches is guided by text-based thinking, and search results subsequently influence further reasoning. We train ReSearch on Qwen2.5-7B(-Instruct) and Qwen2.5-32B(-Instruct) models and conduct extensive experiments. Despite being trained on only one dataset, our models demonstrate strong generalizability across various benchmarks. Analysis reveals that ReSearch naturally elicits advanced reasoning capabilities such as reflection and self-correction during the reinforcement learning process.


U-NIAH: Unified RAG and LLM Evaluation for Long Context Needle-In-A-Haystack

arXiv.org Artificial Intelligence

Recent advancements in Large Language Models (LLMs) have expanded their context windows to unprecedented lengths, sparking debates about the necessity of Retrieval-Augmented Generation (RAG). To address the fragmented evaluation paradigms and limited cases in existing Needle-in-a-Haystack (NIAH), this paper introduces U-NIAH, a unified framework that systematically compares LLMs and RAG methods in controlled long context settings. Our framework extends beyond traditional NIAH by incorporating multi-needle, long-needle, and needle-in-needle configurations, along with different retrieval settings, while leveraging the synthetic Starlight Academy dataset-a fictional magical universe-to eliminate biases from pre-trained knowledge. Through extensive experiments, we investigate three research questions: (1) performance trade-offs between LLMs and RAG, (2) error patterns in RAG, and (3) RAG's limitations in complex settings. Our findings show that RAG significantly enhances smaller LLMs by mitigating the "lost-in-the-middle" effect and improving robustness, achieving an 82.58% win-rate over LLMs. However, we observe that retrieval noise and reverse chunk ordering degrade performance, while surprisingly, advanced reasoning LLMs exhibit reduced RAG compatibility due to sensitivity to semantic distractors. We identify typical error patterns including omission due to noise, hallucination under high noise critical condition, and self-doubt behaviors. Our work not only highlights the complementary roles of RAG and LLMs, but also provides actionable insights for optimizing deployments. Code: https://github.com/Tongji-KGLLM/U-NIAH.


KaLM-Embedding: Superior Training Data Brings A Stronger Embedding Model

arXiv.org Artificial Intelligence

As retrieval-augmented generation prevails in large language models, embedding models are becoming increasingly crucial. Despite the growing number of general embedding models, prior work often overlooks the critical role of training data quality. In this work, we introduce KaLM-Embedding, a general multilingual embedding model that leverages a large quantity of cleaner, more diverse, and domain-specific training data. Our model has been trained with key techniques proven to enhance performance: (1) persona-based synthetic data to create diversified examples distilled from LLMs, (2) ranking consistency filtering to remove less informative samples, and (3) semi-homogeneous task batch sampling to improve training efficacy. Departing from traditional BERT-like architectures, we adopt Qwen2-0.5B as the pre-trained model, facilitating the adaptation of auto-regressive language models for general embedding tasks. Extensive evaluations of the MTEB benchmark across multiple languages show that our model outperforms others of comparable size, setting a new standard for multilingual embedding models with less than 1B parameters.


OneKE: A Dockerized Schema-Guided LLM Agent-based Knowledge Extraction System

arXiv.org Artificial Intelligence

We introduce OneKE, a dockerized schema-guided knowledge extraction system, which can extract knowledge from the Web and raw PDF Books, and support various domains (science, news, etc.). Specifically, we design OneKE with multiple agents and a configure knowledge base. Different agents perform their respective roles, enabling support for various extraction scenarios. The configure knowledge base facilitates schema configuration, error case debugging and correction, further improving the performance. Empirical evaluations on benchmark datasets demonstrate OneKE's efficacy, while case studies further elucidate its adaptability to diverse tasks across multiple domains, highlighting its potential for broad applications. We have open-sourced the Code at https://github.com/zjunlp/OneKE and released a Video at http://oneke.openkg.cn/demo.mp4.


Decoding Urban Industrial Complexity: Enhancing Knowledge-Driven Insights via IndustryScopeGPT

arXiv.org Artificial Intelligence

Industrial parks are critical to urban economic growth. Yet, their development often encounters challenges stemming from imbalances between industrial requirements and urban services, underscoring the need for strategic planning and operations. This paper introduces IndustryScopeKG, a pioneering large-scale multi-modal, multi-level industrial park knowledge graph, which integrates diverse urban data including street views, corporate, socio-economic, and geospatial information, capturing the complex relationships and semantics within industrial parks. Alongside this, we present the IndustryScopeGPT framework, which leverages Large Language Models (LLMs) with Monte Carlo Tree Search to enhance tool-augmented reasoning and decision-making in Industrial Park Planning and Operation (IPPO). Our work significantly improves site recommendation and functional planning, demonstrating the potential of combining LLMs with structured datasets to advance industrial park management. This approach sets a new benchmark for intelligent IPPO research and lays a robust foundation for advancing urban industrial development. The dataset and related code are available at https://github.com/Tongji-KGLLM/IndustryScope.


Few-shot Open Relation Extraction with Gaussian Prototype and Adaptive Margin

arXiv.org Artificial Intelligence

Few-shot relation extraction with none-of-the-above (FsRE with NOTA) aims at predicting labels in few-shot scenarios with unknown classes. FsRE with NOTA is more challenging than the conventional few-shot relation extraction task, since the boundaries of unknown classes are complex and difficult to learn. Meta-learning based methods, especially prototype-based methods, are the mainstream solutions to this task. They obtain the classification boundary by learning the sample distribution of each class. However, their performance is limited because few-shot overfitting and NOTA boundary confusion lead to misclassification between known and unknown classes. To this end, we propose a novel framework based on Gaussian prototype and adaptive margin named GPAM for FsRE with NOTA, which includes three modules, semi-factual representation, GMM-prototype metric learning and decision boundary learning. The first two modules obtain better representations to solve the few-shot problem through debiased information enhancement and Gaussian space distance measurement. The third module learns more accurate classification boundaries and prototypes through adaptive margin and negative sampling. In the training procedure of GPAM, we use contrastive learning loss to comprehensively consider the effects of range and margin on the classification of known and unknown classes to ensure the model's stability and robustness. Sufficient experiments and ablations on the FewRel dataset show that GPAM surpasses previous prototype methods and achieves state-of-the-art performance.


MedBench: A Comprehensive, Standardized, and Reliable Benchmarking System for Evaluating Chinese Medical Large Language Models

arXiv.org Artificial Intelligence

Ensuring the general efficacy and goodness for human beings from medical large language models (LLM) before real-world deployment is crucial. However, a widely accepted and accessible evaluation process for medical LLM, especially in the Chinese context, remains to be established. In this work, we introduce "MedBench", a comprehensive, standardized, and reliable benchmarking system for Chinese medical LLM. First, MedBench assembles the currently largest evaluation dataset (300,901 questions) to cover 43 clinical specialties and performs multi-facet evaluation on medical LLM. Second, MedBench provides a standardized and fully automatic cloud-based evaluation infrastructure, with physical separations for question and ground truth. Third, MedBench implements dynamic evaluation mechanisms to prevent shortcut learning and answer remembering. Applying MedBench to popular general and medical LLMs, we observe unbiased, reproducible evaluation results largely aligning with medical professionals' perspectives. This study establishes a significant foundation for preparing the practical applications of Chinese medical LLMs. MedBench is publicly accessible at https://medbench.opencompass.org.cn.


Rewarding What Matters: Step-by-Step Reinforcement Learning for Task-Oriented Dialogue

arXiv.org Artificial Intelligence

Reinforcement learning (RL) is a powerful approach to enhance task-oriented dialogue (TOD) systems. However, existing RL methods tend to mainly focus on generation tasks, such as dialogue policy learning (DPL) or response generation (RG), while neglecting dialogue state tracking (DST) for understanding. This narrow focus limits the systems to achieve globally optimal performance by overlooking the interdependence between understanding and generation. Additionally, RL methods face challenges with sparse and delayed rewards, which complicates training and optimization. To address these issues, we extend RL into both understanding and generation tasks by introducing step-by-step rewards throughout the token generation. The understanding reward increases as more slots are correctly filled in DST, while the generation reward grows with the accurate inclusion of user requests. Our approach provides a balanced optimization aligned with task completion. Experimental results demonstrate that our approach effectively enhances the performance of TOD systems and achieves new state-of-the-art results on three widely used datasets, including MultiWOZ2.0, MultiWOZ2.1, and In-Car. Our approach also shows superior few-shot ability in low-resource settings compared to current models.


Construction and Application of Materials Knowledge Graph in Multidisciplinary Materials Science via Large Language Model

arXiv.org Artificial Intelligence

Knowledge in materials science is widely dispersed across extensive scientific literature, posing significant challenges for efficient discovery and integration of new materials. Traditional methods, often reliant on costly and time-consuming experimental approaches, further complicate rapid innovation. Addressing these challenges, the integration of artificial intelligence with materials science has opened avenues for accelerating the discovery process, though it also demands precise annotation, data extraction, and traceability of information. To tackle these issues, this article introduces the Materials Knowledge Graph (MKG), which utilizes advanced natural language processing techniques, integrated with large language models to extract and systematically organize a decade's worth of high-quality research into structured triples, contains 162,605 nodes and 731,772 edges. MKG categorizes information into comprehensive labels such as Name, Formula, and Application, structured around a meticulously designed ontology, thus enhancing data usability and integration. By implementing network-based algorithms, MKG not only facilitates efficient link prediction but also significantly reduces reliance on traditional experimental methods. This structured approach not only streamlines materials research but also lays the groundwork for more sophisticated science knowledge graphs.


A User-Friendly Framework for Generating Model-Preferred Prompts in Text-to-Image Synthesis

arXiv.org Artificial Intelligence

Well-designed prompts have demonstrated the potential to guide text-to-image models in generating amazing images. Although existing prompt engineering methods can provide high-level guidance, it is challenging for novice users to achieve the desired results by manually entering prompts due to a discrepancy between novice-user-input prompts and the model-preferred prompts. To bridge the distribution gap between user input behavior and model training datasets, we first construct a novel Coarse-Fine Granularity Prompts dataset (CFP) and propose a novel User-Friendly Fine-Grained Text Generation framework (UF-FGTG) for automated prompt optimization. For CFP, we construct a novel dataset for text-to-image tasks that combines coarse and fine-grained prompts to facilitate the development of automated prompt generation methods. For UF-FGTG, we propose a novel framework that automatically translates user-input prompts into model-preferred prompts. Specifically, we propose a prompt refiner that continually rewrites prompts to empower users to select results that align with their unique needs. Meanwhile, we integrate image-related loss functions from the text-to-image model into the training process of text generation to generate model-preferred prompts. Additionally, we propose an adaptive feature extraction module to ensure diversity in the generated results. Experiments demonstrate that our approach is capable of generating more visually appealing and diverse images than previous state-of-the-art methods, achieving an average improvement of 5% across six quality and aesthetic metrics.