Wang, Hao
TD3: Tucker Decomposition Based Dataset Distillation Method for Sequential Recommendation
Zhang, Jiaqing, Yin, Mingjia, Wang, Hao, Li, Yawen, Ye, Yuyang, Lou, Xingyu, Du, Junping, Chen, Enhong
In the era of data-centric AI, the focus of recommender systems has shifted from model-centric innovations to data-centric approaches. The success of modern AI models is built on large-scale datasets, but this also results in significant training costs. Dataset distillation has emerged as a key solution, condensing large datasets to accelerate model training while preserving model performance. However, condensing discrete and sequentially correlated user-item interactions, particularly with extensive item sets, presents considerable challenges. This paper introduces \textbf{TD3}, a novel \textbf{T}ucker \textbf{D}ecomposition based \textbf{D}ataset \textbf{D}istillation method within a meta-learning framework, designed for sequential recommendation. TD3 distills a fully expressive \emph{synthetic sequence summary} from original data. To efficiently reduce computational complexity and extract refined latent patterns, Tucker decomposition decouples the summary into four factors: \emph{synthetic user latent factor}, \emph{temporal dynamics latent factor}, \emph{shared item latent factor}, and a \emph{relation core} that models their interconnections. Additionally, a surrogate objective in bi-level optimization is proposed to align feature spaces extracted from models trained on both original data and synthetic sequence summary beyond the na\"ive performance matching approach. In the \emph{inner-loop}, an augmentation technique allows the learner to closely fit the synthetic summary, ensuring an accurate update of it in the \emph{outer-loop}. To accelerate the optimization process and address long dependencies, RaT-BPTT is employed for bi-level optimization. Experiments and analyses on multiple public datasets have confirmed the superiority and cross-architecture generalizability of the proposed designs. Codes are released at https://github.com/USTC-StarTeam/TD3.
The Hidden Life of Tokens: Reducing Hallucination of Large Vision-Language Models via Visual Information Steering
Li, Zhuowei, Shi, Haizhou, Gao, Yunhe, Liu, Di, Wang, Zhenting, Chen, Yuxiao, Liu, Ting, Zhao, Long, Wang, Hao, Metaxas, Dimitris N.
Large Vision-Language Models (LVLMs) can reason effectively over both textual and visual inputs, but they tend to hallucinate syntactically coherent yet visually ungrounded contents. In this paper, we investigate the internal dynamics of hallucination by examining the tokens logits rankings throughout the generation process, revealing three key patterns in how LVLMs process information: (1) gradual visual information loss -- visually grounded tokens gradually become less favored throughout generation, and (2) early excitation -- semantically meaningful tokens achieve peak activation in the layers earlier than the final layer. (3) hidden genuine information -- visually grounded tokens though not being eventually decided still retain relatively high rankings at inference. Based on these insights, we propose VISTA (Visual Information Steering with Token-logit Augmentation), a training-free inference-time intervention framework that reduces hallucination while promoting genuine information. VISTA works by combining two complementary approaches: reinforcing visual information in activation space and leveraging early layer activations to promote semantically meaningful decoding. Compared to existing methods, VISTA requires no external supervision and is applicable to various decoding strategies. Extensive experiments show that VISTA on average reduces hallucination by abount 40% on evaluated open-ended generation task, and it consistently outperforms existing methods on four benchmarks across four architectures under three decoding strategies.
Transfer Learning of Surrogate Models: Integrating Domain Warping and Affine Transformations
Pan, Shuaiqun, Vermetten, Diederick, Lรณpez-Ibรกรฑez, Manuel, Bรคck, Thomas, Wang, Hao
Surrogate models provide efficient alternatives to computationally demanding real-world processes but often require large datasets for effective training. A promising solution to this limitation is the transfer of pre-trained surrogate models to new tasks. Previous studies have investigated the transfer of differentiable and non-differentiable surrogate models, typically assuming an affine transformation between the source and target functions. This paper extends previous research by addressing a broader range of transformations, including linear and nonlinear variations. Specifically, we consider the combination of an unknown input warping, such as one modelled by the beta cumulative distribution function, with an unspecified affine transformation. Our approach achieves transfer learning by employing a limited number of data points from the target task to optimize these transformations, minimizing empirical loss on the transfer dataset. We validate the proposed method on the widely used Black-Box Optimization Benchmark (BBOB) testbed and a real-world transfer learning task from the automobile industry. The results underscore the significant advantages of the approach, revealing that the transferred surrogate significantly outperforms both the original surrogate and the one built from scratch using the transfer dataset, particularly in data-scarce scenarios.
Evolving Hard Maximum Cut Instances for Quantum Approximate Optimization Algorithms
Pan, Shuaiqun, Patel, Yash J., Neumann, Aneta, Neumann, Frank, Bรคck, Thomas, Wang, Hao
Variational quantum algorithms, such as the Recursive Quantum Approximate Optimization Algorithm (RQAOA), have become increasingly popular, offering promising avenues for employing Noisy Intermediate-Scale Quantum devices to address challenging combinatorial optimization tasks like the maximum cut problem. In this study, we utilize an evolutionary algorithm equipped with a unique fitness function. This approach targets hard maximum cut instances within the latent space of a Graph Autoencoder, identifying those that pose significant challenges or are particularly tractable for RQAOA, in contrast to the classic Goemans and Williamson algorithm. Our findings not only delineate the distinct capabilities and limitations of each algorithm but also expand our understanding of RQAOA's operational limits. Furthermore, the diverse set of graphs we have generated serves as a crucial benchmarking asset, emphasizing the need for more advanced algorithms to tackle combinatorial optimization challenges. Additionally, our results pave the way for new avenues in graph generation research, offering exciting opportunities for future explorations.
Anomaly Detection in Cooperative Vehicle Perception Systems under Imperfect Communication
Bastola, Ashish, Wang, Hao, Razi, Abolfazl
Anomaly detection is a critical requirement for ensuring safety in autonomous driving. In this work, we leverage Cooperative Perception to share information across nearby vehicles, enabling more accurate identification and consensus of anomalous behaviors in complex traffic scenarios. To account for the real-world challenge of imperfect communication, we propose a cooperative-perception-based anomaly detection framework (CPAD), which is a robust architecture that remains effective under communication interruptions, thereby facilitating reliable performance even in low-bandwidth settings. Since no multi-agent anomaly detection dataset exists for vehicle trajectories, we introduce 15,000 different scenarios with a 90,000 trajectories benchmark dataset generated through rule-based vehicle dynamics analysis. Empirical results demonstrate that our approach outperforms standard anomaly classification methods in F1-score, AUC and showcase strong robustness to agent connection interruptions.
THOR: A Generic Energy Estimation Approach for On-Device Training
Zhang, Jiaru, Wang, Zesong, Wang, Hao, Song, Tao, Su, Huai-an, Chen, Rui, Hua, Yang, Zhou, Xiangwei, Ma, Ruhui, Pan, Miao, Guan, Haibing
Battery-powered mobile devices (e.g., smartphones, AR/VR glasses, and various IoT devices) are increasingly being used for AI training due to their growing computational power and easy access to valuable, diverse, and real-time data. On-device training is highly energy-intensive, making accurate energy consumption estimation crucial for effective job scheduling and sustainable AI. However, the heterogeneity of devices and the complexity of models challenge the accuracy and generalizability of existing estimation methods. This paper proposes THOR, a generic approach for energy consumption estimation in deep neural network (DNN) training. First, we examine the layer-wise energy additivity property of DNNs and strategically partition the entire model into layers for fine-grained energy consumption profiling. Then, we fit Gaussian Process (GP) models to learn from layer-wise energy consumption measurements and estimate a DNN's overall energy consumption based on its layer-wise energy additivity property. We conduct extensive experiments with various types of models across different real-world platforms. The results demonstrate that THOR has effectively reduced the Mean Absolute Percentage Error (MAPE) by up to 30%. Moreover, THOR is applied in guiding energy-aware pruning, successfully reducing energy consumption by 50%, thereby further demonstrating its generality and potential.
InsTex: Indoor Scenes Stylized Texture Synthesis
Zhang, Yunfan, Xiong, Zhiwei, Shen, Zhiqi, Lin, Guosheng, Wang, Hao, Vun, Nicolas
Generating high-quality textures for 3D scenes is crucial for applications in interior design, gaming, and augmented/virtual reality (AR/VR). Although recent advancements in 3D generative models have enhanced content creation, significant challenges remain in achieving broad generalization and maintaining style consistency across multiple viewpoints. Current methods, such as 2D diffusion models adapted for 3D texturing, suffer from lengthy processing times and visual artifacts, while approaches driven by 3D data often fail to generalize effectively. To overcome these challenges, we introduce InsTex, a two-stage architecture designed to generate high-quality, style-consistent textures for 3D indoor scenes. InsTex utilizes depth-to-image diffusion priors in a coarse-to-fine pipeline, first generating multi-view images with a pre-trained 2D diffusion model and subsequently refining the textures for consistency. Our method supports both textual and visual prompts, achieving state-of-the-art results in visual quality and quantitative metrics, and demonstrates its effectiveness across various 3D texturing applications.
ImageRef-VL: Enabling Contextual Image Referencing in Vision-Language Models
Yi, Jingwei, Yin, Junhao, Xu, Ju, Bao, Peng, Wang, Yongliang, Fan, Wei, Wang, Hao
Vision-Language Models (VLMs) have demonstrated remarkable capabilities in understanding multimodal inputs and have been widely integrated into Retrieval-Augmented Generation (RAG) based conversational systems. While current VLM-powered chatbots can provide textual source references in their responses, they exhibit significant limitations in referencing contextually relevant images during conversations. In this paper, we introduce Contextual Image Reference -- the ability to appropriately reference relevant images from retrieval documents based on conversation context -- and systematically investigate VLMs' capability in this aspect. We conduct the first evaluation for contextual image referencing, comprising a dedicated testing dataset and evaluation metrics. Furthermore, we propose ImageRef-VL, a method that significantly enhances open-source VLMs' image referencing capabilities through instruction fine-tuning on a large-scale, manually curated multimodal conversation dataset. Experimental results demonstrate that ImageRef-VL not only outperforms proprietary models but also achieves an 88% performance improvement over state-of-the-art open-source VLMs in contextual image referencing tasks. Our code is available at https://github.com/bytedance/ImageRef-VL.
Agent4Edu: Generating Learner Response Data by Generative Agents for Intelligent Education Systems
Gao, Weibo, Liu, Qi, Yue, Linan, Yao, Fangzhou, Lv, Rui, Zhang, Zheng, Wang, Hao, Huang, Zhenya
Personalized learning represents a promising educational strategy within intelligent educational systems, aiming to enhance learners' practice efficiency. However, the discrepancy between offline metrics and online performance significantly impedes their progress. To address this challenge, we introduce Agent4Edu, a novel personalized learning simulator leveraging recent advancements in human intelligence through large language models (LLMs). Agent4Edu features LLM-powered generative agents equipped with learner profile, memory, and action modules tailored to personalized learning algorithms. The learner profiles are initialized using real-world response data, capturing practice styles and cognitive factors. Inspired by human psychology theory, the memory module records practice facts and high-level summaries, integrating reflection mechanisms. The action module supports various behaviors, including exercise understanding, analysis, and response generation. Each agent can interact with personalized learning algorithms, such as computerized adaptive testing, enabling a multifaceted evaluation and enhancement of customized services. Through a comprehensive assessment, we explore the strengths and weaknesses of Agent4Edu, emphasizing the consistency and discrepancies in responses between agents and human learners. The code, data, and appendix are publicly available at https://github.com/bigdata-ustc/Agent4Edu.
Deep Learning for Disease Outbreak Prediction: A Robust Early Warning Signal for Transcritical Bifurcations
Miry, Reza, Chakraborty, Amit K., Greiner, Russell, Lewis, Mark A., Wang, Hao, Guan, Tianyu, Ramazi, Pouria
Early Warning Signals (EWSs) are vital for implementing preventive measures before a disease turns into a pandemic. While new diseases exhibit unique behaviors, they often share fundamental characteristics from a dynamical systems perspective. Moreover, measurements during disease outbreaks are often corrupted by different noise sources, posing challenges for Time Series Classification (TSC) tasks. In this study, we address the problem of having a robust EWS for disease outbreak prediction using a best-performing deep learning model in the domain of TSC. We employed two simulated datasets to train the model: one representing generated dynamical systems with randomly selected polynomial terms to model new disease behaviors, and another simulating noise-induced disease dynamics to account for noisy measurements. The model's performance was analyzed using both simulated data from different disease models and real-world data, including influenza and COVID-19. Results demonstrate that the proposed model outperforms previous models, effectively providing EWSs of impending outbreaks across various scenarios. This study bridges advancements in deep learning with the ability to provide robust early warning signals in noisy environments, making it highly applicable to real-world crises involving emerging disease outbreaks.