Not enough data to create a plot.
Try a different view from the menu above.
Wang, Hao
A Comprehensive Evaluation of Large Language Models on Aspect-Based Sentiment Analysis
Zhou, Changzhi, Song, Dandan, Tian, Yuhang, Wu, Zhijing, Wang, Hao, Zhang, Xinyu, Yang, Jun, Yang, Ziyi, Zhang, Shuhao
Recently, Large Language Models (LLMs) have garnered increasing attention in the field of natural language processing, revolutionizing numerous downstream tasks with powerful reasoning and generation abilities. For example, In-Context Learning (ICL) introduces a fine-tuning-free paradigm, allowing out-of-the-box LLMs to execute downstream tasks by analogy learning without any fine-tuning. Besides, in a fine-tuning-dependent paradigm where substantial training data exists, Parameter-Efficient Fine-Tuning (PEFT), as the cost-effective methods, enable LLMs to achieve excellent performance comparable to full fine-tuning. However, these fascinating techniques employed by LLMs have not been fully exploited in the ABSA field. Previous works probe LLMs in ABSA by merely using randomly selected input-output pairs as demonstrations in ICL, resulting in an incomplete and superficial evaluation. In this paper, we shed light on a comprehensive evaluation of LLMs in the ABSA field, involving 13 datasets, 8 ABSA subtasks, and 6 LLMs. Specifically, we design a unified task formulation to unify ``multiple LLMs for multiple ABSA subtasks in multiple paradigms.'' For the fine-tuning-dependent paradigm, we efficiently fine-tune LLMs using instruction-based multi-task learning. For the fine-tuning-free paradigm, we propose 3 demonstration selection strategies to stimulate the few-shot abilities of LLMs. Our extensive experiments demonstrate that LLMs achieve a new state-of-the-art performance compared to fine-tuned Small Language Models (SLMs) in the fine-tuning-dependent paradigm. More importantly, in the fine-tuning-free paradigm where SLMs are ineffective, LLMs with ICL still showcase impressive potential and even compete with fine-tuned SLMs on some ABSA subtasks.
FSMLP: Modelling Channel Dependencies With Simplex Theory Based Multi-Layer Perceptions In Frequency Domain
Li, Zhengnan, Li, Haoxuan, Wang, Hao, Fang, Jun, Qin, Duoyin Li Yunxiao
Time series forecasting (TSF) plays a crucial role in various domains, including web data analysis, energy consumption prediction, and weather forecasting. While Multi-Layer Perceptrons (MLPs) are lightweight and effective for capturing temporal dependencies, they are prone to overfitting when used to model inter-channel dependencies. In this paper, we investigate the overfitting problem in channel-wise MLPs using Rademacher complexity theory, revealing that extreme values in time series data exacerbate this issue. To mitigate this issue, we introduce a novel Simplex-MLP layer, where the weights are constrained within a standard simplex. This strategy encourages the model to learn simpler patterns and thereby reducing overfitting to extreme values. Based on the Simplex-MLP layer, we propose a novel \textbf{F}requency \textbf{S}implex \textbf{MLP} (FSMLP) framework for time series forecasting, comprising of two kinds of modules: \textbf{S}implex \textbf{C}hannel-\textbf{W}ise MLP (SCWM) and \textbf{F}requency \textbf{T}emporal \textbf{M}LP (FTM). The SCWM effectively leverages the Simplex-MLP to capture inter-channel dependencies, while the FTM is a simple yet efficient temporal MLP designed to extract temporal information from the data. Our theoretical analysis shows that the upper bound of the Rademacher Complexity for Simplex-MLP is lower than that for standard MLPs. Moreover, we validate our proposed method on seven benchmark datasets, demonstrating significant improvements in forecasting accuracy and efficiency, while also showcasing superior scalability. Additionally, we demonstrate that Simplex-MLP can improve other methods that use channel-wise MLP to achieve less overfitting and improved performance. Code are available \href{https://github.com/FMLYD/FSMLP}{\textcolor{red}{here}}.
BlackDAN: A Black-Box Multi-Objective Approach for Effective and Contextual Jailbreaking of Large Language Models
Wang, Xinyuan, Huang, Victor Shea-Jay, Chen, Renmiao, Wang, Hao, Pan, Chengwei, Sha, Lei, Huang, Minlie
While large language models (LLMs) exhibit remarkable capabilities across various tasks, they encounter potential security risks such as jailbreak attacks, which exploit vulnerabilities to bypass security measures and generate harmful outputs. Existing jailbreak strategies mainly focus on maximizing attack success rate (ASR), frequently neglecting other critical factors, including the relevance of the jailbreak response to the query and the level of stealthiness. This narrow focus on single objectives can result in ineffective attacks that either lack contextual relevance or are easily recognizable. In this work, we introduce BlackDAN, an innovative black-box attack framework with multi-objective optimization, aiming to generate high-quality prompts that effectively facilitate jailbreaking while maintaining contextual relevance and minimizing detectability. BlackDAN leverages Multiobjective Evolutionary Algorithms (MOEAs), specifically the NSGA-II algorithm, to optimize jailbreaks across multiple objectives including ASR, stealthiness, and semantic relevance. By integrating mechanisms like mutation, crossover, and Pareto-dominance, BlackDAN provides a transparent and interpretable process for generating jailbreaks. Furthermore, the framework allows customization based on user preferences, enabling the selection of prompts that balance harmfulness, relevance, and other factors. Experimental results demonstrate that BlackDAN outperforms traditional single-objective methods, yielding higher success rates and improved robustness across various LLMs and multimodal LLMs, while ensuring jailbreak responses are both relevant and less detectable.
Asynchronous Fractional Multi-Agent Deep Reinforcement Learning for Age-Minimal Mobile Edge Computing
Jin, Lyudong, Tang, Ming, Pan, Jiayu, Zhang, Meng, Wang, Hao
In the realm of emerging real-time networked applications like cyber-physical systems (CPS), the Age of Information (AoI) has merged as a pivotal metric for evaluating the timeliness. To meet the high computational demands, such as those in intelligent manufacturing within CPS, mobile edge computing (MEC) presents a promising solution for optimizing computing and reducing AoI. In this work, we study the timeliness of computational-intensive updates and explores jointly optimize the task updating and offloading policies to minimize AoI. Specifically, we consider edge load dynamics and formulate a task scheduling problem to minimize the expected time-average AoI. The fractional objective introduced by AoI and the semi-Markov game nature of the problem render this challenge particularly difficult, with existing approaches not directly applicable. To this end, we present a comprehensive framework to fractional reinforcement learning (RL). We first introduce a fractional single-agent RL framework and prove its linear convergence. We then extend this to a fractional multi-agent RL framework with a convergence analysis. To tackle the challenge of asynchronous control in semi-Markov game, we further design an asynchronous model-free fractional multi-agent RL algorithm, where each device makes scheduling decisions with the hybrid action space without knowing the system dynamics and decisions of other devices. Experimental results show that our proposed algorithms reduce the average AoI by up to 52.6% compared with the best baseline algorithm in our experiments.
Marco-o1: Towards Open Reasoning Models for Open-Ended Solutions
Zhao, Yu, Yin, Huifeng, Zeng, Bo, Wang, Hao, Shi, Tianqi, Lyu, Chenyang, Wang, Longyue, Luo, Weihua, Zhang, Kaifu
OpenAI recently introduces the groundbreaking o1 model [OpenAI, 2024, Zhong et al., 2024], renowned for its exceptional reasoning capabilities. This model has demonstrates outstanding performance on platforms such as AIME and CodeForces, surpassing other leading models. Inspired by this success, we aim to push the boundaries of LLMs even further, enhancing their reasoning abilities to tackle complex, real-world challenges. Inspired by OpenAI's o1, we aim to explore potential approaches to shed light on the currently unclear technical roadmap for large reasoning models (LRM). Marco-o1 leverages advanced techniques like CoT fine-tuning [Wei et al., 2022], MCTS [Wei et al., 2022, Feng et al., 2023, Silver et al., 2017], and Reasoning Action Strategies to enhance its reasoning power. As shown in Figure 2, by finetuning Qwen2-7B-Instruct [Yang et al., 2024] with a combination of the filtered Open-O1 CoT dataset [OpenO1 Team, 2024], Marco-o1 CoT dataset, and Marco-o1 Instruction dataset, Marco-o1 improves its handling of complex tasks.
A Hybrid Loss Framework for Decomposition-based Time Series Forecasting Methods: Balancing Global and Component Errors
Han, Ronghui, Feng, Duanyu, Du, Hongyu, Wang, Hao
Accurate time series forecasting, predicting future values based on past data, is crucial for diverse industries. Many current time series methods decompose time series into multiple sub-series, applying different model architectures and training with an end-to-end overall loss for forecasting. However, this raises a question: does this overall loss prioritize the importance of critical sub-series within the decomposition for the better performance? To investigate this, we conduct a study on the impact of overall loss on existing time series methods with sequence decomposition. Our findings reveal that overall loss may introduce bias in model learning, hindering the learning of the prioritization of more significant sub-series and limiting the forecasting performance. To address this, we propose a hybrid loss framework combining the global and component losses. This framework introduces component losses for each sub-series alongside the original overall loss. It employs a dual min-max algorithm to dynamically adjust weights between the overall loss and component losses, and within component losses. This enables the model to achieve better performance of current time series methods by focusing on more critical sub-series while still maintaining a low overall loss. We integrate our loss framework into several time series methods and evaluate the performance on multiple datasets. Results show an average improvement of 0.5-2% over existing methods without any modifications to the model architectures.
Methane projections from Canada's oil sands tailings using scientific deep learning reveal significant underestimation
Saha, Esha, Wang, Oscar, Chakraborty, Amit K., Garcia, Pablo Venegas, Milne, Russell, Wang, Hao
Bitumen extraction for the production of synthetic crude oil in Canada's Athabasca Oil Sands industry has recently come under spotlight for being a significant source of greenhouse gas emission. A major cause of concern is methane, a greenhouse gas produced by the anaerobic biodegradation of hydrocarbons in oil sands residues, or tailings, stored in settle basins commonly known as oil sands tailing ponds. In order to determine the methane emitting potential of these tailing ponds and have future methane projections, we use real-time weather data, mechanistic models developed from laboratory controlled experiments, and industrial reports to train a physics constrained machine learning model. Our trained model can successfully identify the directions of active ponds and estimate their emission levels, which are generally hard to obtain due to data sampling restrictions. We found that each active oil sands tailing pond could emit between 950 to 1500 tonnes of methane per year, whose environmental impact is equivalent to carbon dioxide emissions from at least 6000 gasoline powered vehicles. Although abandoned ponds are often presumed to have insignificant emissions, our findings indicate that these ponds could become active over time and potentially emit up to 1000 tonnes of methane each year. Taking an average over all datasets that was used in model training, we estimate that emissions around major oil sands regions would need to be reduced by approximately 12% over a year, to reduce the average methane concentrations to 2005 levels.
CDR: Customizable Density Ratios of Strong-over-weak LLMs for Preference Annotation
Xu, Guangxuan, Xu, Kai, Sudalairaj, Shivchander, Wang, Hao, Srivastava, Akash
Preference tuning of large language models (LLMs) relies on high-quality human preference data, which is often expensive and time-consuming to gather. While existing methods can use trained reward models or proprietary model as judges for preference annotation, they have notable drawbacks: training reward models remain dependent on initial human data, and using proprietary model imposes license restrictions that inhibits commercial usage. In this paper, we introduce customized density ratio (CDR), a training-free and highly effective method that leverages off-the-shelf LLMs for preference data annotation. Our approach uses the log-density ratio between a better-aligned LLM and a less aligned LLM as a reward signal. We explores 221 different LLMs pairs and empirically demonstrate that increasing the performance gap between paired LLMs correlates with better reward generalization. Furthermore, we show that tailoring the density ratio reward function with specific criteria and preference exemplars enhances performance across domains and within target areas. In our experiment using density ratio from a pair of Mistral-7B models, CDR achieves a RewardBench score of 82.6, outperforming the best trained reward functions from same model class and demonstrating competitive performance against SoTA models in Safety (91.0) and Reasoning (88.0) domains. We use CDR to annotate an on-policy preference dataset with which we preference tune Llama-3-8B-Instruct with SimPO. Using reward signals from two relatively weak models, our approach pushes Llama-3-8B to achieve a 37.4% (+15.1%) Preference tuning has advanced the capabilities of large language models (LLMs), but this progress relies on high-quality human preference data which is both costly and time-consuming to gather. Cutting-edge models (e.g., ChatGPT, GPT-4, Claude-3) are aligned with curated, quality-controlled human preference data, typically provided by specialized companies. AI-feedback solutions are emerging as an alternative--either through a trained reward model (Dong et al., 2024) or proprietary LLM-as-a-judge (Cui et al., 2023). However, training reward models still rely on costly initial human preference data, and proprietary LLM-as-a-judge approaches introduce licensing restrictions that generally prevent commercial use.
Collaborative Cognitive Diagnosis with Disentangled Representation Learning for Learner Modeling
Gao, Weibo, Liu, Qi, Yue, Linan, Yao, Fangzhou, Wang, Hao, Gu, Yin, Zhang, Zheng
Learners sharing similar implicit cognitive states often display comparable observable problem-solving performances. Leveraging collaborative connections among such similar learners proves valuable in comprehending human learning. Motivated by the success of collaborative modeling in various domains, such as recommender systems, we aim to investigate how collaborative signals among learners contribute to the diagnosis of human cognitive states (i.e., knowledge proficiency) in the context of intelligent education. The primary challenges lie in identifying implicit collaborative connections and disentangling the entangled cognitive factors of learners for improved explainability and controllability in learner Cognitive Diagnosis (CD). However, there has been no work on CD capable of simultaneously modeling collaborative and disentangled cognitive states. To address this gap, we present Coral, a Collaborative cognitive diagnosis model with disentangled representation learning. Specifically, Coral first introduces a disentangled state encoder to achieve the initial disentanglement of learners' states. Subsequently, a meticulously designed collaborative representation learning procedure captures collaborative signals. It dynamically constructs a collaborative graph of learners by iteratively searching for optimal neighbors in a context-aware manner. Using the constructed graph, collaborative information is extracted through node representation learning. Finally, a decoding process aligns the initial cognitive states and collaborative states, achieving co-disentanglement with practice performance reconstructions. Extensive experiments demonstrate the superior performance of Coral, showcasing significant improvements over state-of-the-art methods across several real-world datasets. Our code is available at https://github.com/bigdata-ustc/Coral.
Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model
Xie, Wenjia, Wang, Hao, Zhang, Luankang, Zhou, Rui, Lian, Defu, Chen, Enhong
Sequential recommendation (SR) aims to predict items that users may be interested in based on their historical behavior sequences. We revisit SR from a novel information-theoretic perspective and find that conventional sequential modeling methods fail to adequately capture the randomness and unpredictability of user behavior. Inspired by fuzzy information processing theory, this paper introduces the DDSR model, which uses fuzzy sets of interaction sequences to overcome the limitations and better capture the evolution of users' real interests. Formally based on diffusion transition processes in discrete state spaces, which is unlike common diffusion models such as DDPM that operate in continuous domains. It is better suited for discrete data, using structured transitions instead of arbitrary noise introduction to avoid information loss. Additionally, to address the inefficiency of matrix transformations due to the vast discrete space, we use semantic labels derived from quantization or RQ-VAE to replace item IDs, enhancing efficiency and improving cold start issues. Testing on three public benchmark datasets shows that DDSR outperforms existing state-of-the-art methods in various settings, demonstrating its potential and effectiveness in handling SR tasks.