Goto

Collaborating Authors

 Wang, Haiyang


DeFine: A Decomposed and Fine-Grained Annotated Dataset for Long-form Article Generation

arXiv.org Artificial Intelligence

Long-form article generation (LFAG) presents challenges such as maintaining logical consistency, comprehensive topic coverage, and narrative coherence across extended articles. Existing datasets often lack both the hierarchical structure and fine-grained annotation needed to effectively decompose tasks, resulting in shallow, disorganized article generation. To address these limitations, we introduce DeFine, a Decomposed and Fine-grained annotated dataset for long-form article generation. DeFine is characterized by its hierarchical decomposition strategy and the integration of domain-specific knowledge with multi-level annotations, ensuring granular control and enhanced depth in article generation. To construct the dataset, a multi-agent collaborative pipeline is proposed, which systematically segments the generation process into four parts: Data Miner, Cite Retreiver, Q&A Annotator and Data Cleaner. To validate the effectiveness of DeFine, we designed and tested three LFAG baselines: the web retrieval, the local retrieval, and the grounded reference. We fine-tuned the Qwen2-7b-Instruct model using the DeFine training dataset. The experimental results showed significant improvements in text quality, specifically in topic coverage, depth of information, and content fidelity. Our dataset publicly available to facilitate future research.


TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters

arXiv.org Artificial Intelligence

Transformers have become the predominant architecture in foundation models due to their excellent performance across various domains. However, the substantial cost of scaling these models remains a significant concern. This problem arises primarily from their dependence on a fixed number of parameters within linear projections. When architectural modifications (e.g., channel dimensions) are introduced, the entire model typically requires retraining from scratch. As model sizes continue growing, this strategy results in increasingly high computational costs and becomes unsustainable. To overcome this problem, we introduce Tokenformer, a natively scalable architecture that leverages the attention mechanism not only for computations among input tokens but also for interactions between tokens and model parameters, thereby enhancing architectural flexibility. By treating model parameters as tokens, we replace all the linear projections in Transformers with our token-parameter attention layer, where input tokens act as queries and model parameters as keys and values. This reformulation allows for progressive and efficient scaling without necessitating retraining from scratch. Our model scales from 124M to 1.4B parameters by incrementally adding new key-value parameter pairs, achieving performance comparable to Transformers trained from scratch while greatly reducing training costs.


SNN-PAR: Energy Efficient Pedestrian Attribute Recognition via Spiking Neural Networks

arXiv.org Artificial Intelligence

Artificial neural network based Pedestrian Attribute Recognition (PAR) has been widely studied in recent years, despite many progresses, however, the energy consumption is still high. To address this issue, in this paper, we propose a Spiking Neural Network (SNN) based framework for energy-efficient attribute recognition. Specifically, we first adopt a spiking tokenizer module to transform the given pedestrian image into spiking feature representations. Then, the output will be fed into the spiking Transformer backbone networks for energy-efficient feature extraction. We feed the enhanced spiking features into a set of feed-forward networks for pedestrian attribute recognition. In addition to the widely used binary cross-entropy loss function, we also exploit knowledge distillation from the artificial neural network to the spiking Transformer network for more accurate attribute recognition. Extensive experiments on three widely used PAR benchmark datasets fully validated the effectiveness of our proposed SNN-PAR framework. The source code of this paper is released on \url{https://github.com/Event-AHU/OpenPAR}.


GSINA: Improving Subgraph Extraction for Graph Invariant Learning via Graph Sinkhorn Attention

arXiv.org Artificial Intelligence

Graph invariant learning (GIL) has been an effective approach to discovering the invariant relationships between graph data and its labels for different graph learning tasks under various distribution shifts. Many recent endeavors of GIL focus on extracting the invariant subgraph from the input graph for prediction as a regularization strategy to improve the generalization performance of graph learning. Despite their success, such methods also have various limitations in obtaining their invariant subgraphs. In this paper, we provide in-depth analyses of the drawbacks of existing works and propose corresponding principles of our invariant subgraph extraction: 1) the sparsity, to filter out the variant features, 2) the softness, for a broader solution space, and 3) the differentiability, for a soundly end-to-end optimization. To meet these principles in one shot, we leverage the Optimal Transport (OT) theory and propose a novel graph attention mechanism called Graph Sinkhorn Attention (GSINA). This novel approach serves as a powerful regularization method for GIL tasks. By GSINA, we are able to obtain meaningful, differentiable invariant subgraphs with controllable sparsity and softness. Moreover, GSINA is a general graph learning framework that could handle GIL tasks of multiple data grain levels. Extensive experiments on both synthetic and real-world datasets validate the superiority of our GSINA, which outperforms the state-of-the-art GIL methods by large margins on both graph-level tasks and node-level tasks. Our code is publicly available at \url{https://github.com/dingfangyu/GSINA}.


Adversarial Learning-based Stance Classifier for COVID-19-related Health Policies

arXiv.org Artificial Intelligence

The ongoing COVID-19 pandemic has caused immeasurable losses for people worldwide. To contain the spread of the virus and further alleviate the crisis, various health policies (e.g., stay-at-home orders) have been issued which spark heated discussions as users turn to share their attitudes on social media. In this paper, we consider a more realistic scenario on stance detection (i.e., cross-target and zero-shot settings) for the pandemic and propose an adversarial learning-based stance classifier to automatically identify the public's attitudes toward COVID-19-related health policies. Specifically, we adopt adversarial learning that allows the model to train on a large amount of labeled data and capture transferable knowledge from source topics, so as to enable generalize to the emerging health policies with sparse labeled data. To further enhance the model's deeper understanding, we incorporate policy descriptions as external knowledge into the model. Meanwhile, a GeoEncoder is designed which encourages the model to capture unobserved background factors specified by each region and then represent them as non-text information. We evaluate the performance of a broad range of baselines on the stance detection task for COVID-19-related health policies, and experimental results show that our proposed method achieves state-of-the-art performance in both cross-target and zero-shot settings.


Non-convex Distributionally Robust Optimization: Non-asymptotic Analysis

arXiv.org Machine Learning

Distributionally robust optimization (DRO) is a widely-used approach to learn models that are robust against distribution shift. Compared with the standard optimization setting, the objective function in DRO is more difficult to optimize, and most of the existing theoretical results make strong assumptions on the loss function. In this work we bridge the gap by studying DRO algorithms for general smooth non-convex losses. By carefully exploiting the specific form of the DRO objective, we are able to provide non-asymptotic convergence guarantees even though the objective function is possibly non-convex, non-smooth and has unbounded gradient noise. In particular, we prove that a special algorithm called the mini-batch normalized gradient descent with momentum, can find an $\epsilon$ first-order stationary point within $O( \epsilon^{-4} )$ gradient complexity. We also discuss the conditional value-at-risk (CVaR) setting, where we propose a penalized DRO objective based on a smoothed version of the CVaR that allows us to obtain a similar convergence guarantee. We finally verify our theoretical results in a number of tasks and find that the proposed algorithm can consistently achieve prominent acceleration.


Collaborative Visual Navigation

arXiv.org Artificial Intelligence

As a fundamental problem for Artificial Intelligence, multi-agent system (MAS) is making rapid progress, mainly driven by multi-agent reinforcement learning (MARL) techniques. However, previous MARL methods largely focused on grid-world like or game environments; MAS in visually rich environments has remained less explored. To narrow this gap and emphasize the crucial role of perception in MAS, we propose a large-scale 3D dataset, CollaVN, for multi-agent visual navigation (MAVN). In CollaVN, multiple agents are entailed to cooperatively navigate across photo-realistic environments to reach target locations. Diverse MAVN variants are explored to make our problem more general. Moreover, a memory-augmented communication framework is proposed. Each agent is equipped with a private, external memory to persistently store communication information. This allows agents to make better use of their past communication information, enabling more efficient collaboration and robust long-term planning. In our experiments, several baselines and evaluation metrics are designed. We also empirically verify the efficacy of our proposed MARL approach across different MAVN task settings.


Drug-Target Interaction Prediction with Graph Attention networks

arXiv.org Artificial Intelligence

Motivation: Predicting Drug-Target Interaction (DTI) is a well-studied topic in bioinformatics due to its relevance in the fields of proteomics and pharmaceutical research. Although many machine learning methods have been successfully applied in this task, few of them aim at leveraging the inherent heterogeneous graph structure in the DTI network to address the challenge. For better learning and interpreting the DTI topological structure and the similarity, it is desirable to have methods specifically for predicting interactions from the graph structure. Results: We present an end-to-end framework, DTI-GAT (Drug-Target Interaction prediction with Graph Attention networks) for DTI predictions. DTI-GAT incorporates a deep neural network architecture that operates on graph-structured data with the attention mechanism, which leverages both the interaction patterns and the features of drug and protein sequences. DTI-GAT facilitates the interpretation of the DTI topological structure by assigning different attention weights to each node with the self-attention mechanism. Experimental evaluations show that DTI-GAT outperforms various state-of-the-art systems on the binary DTI prediction problem. Moreover, the independent study results further demonstrate that our model can be generalized better than other conventional methods. Availability: The source code and all datasets are available at https://github.com/Haiyang-W/DTI-GRAPH


Anomaly Detection of Time Series with Smoothness-Inducing Sequential Variational Auto-Encoder

arXiv.org Artificial Intelligence

Deep generative models have demonstrated their effectiveness in learning latent representation and modeling complex dependencies of time series. In this paper, we present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of multi-dimensional time series. Our model is based on Variational Auto-Encoder (VAE), and its backbone is fulfilled by a Recurrent Neural Network to capture latent temporal structures of time series for both generative model and inference model. Specifically, our model parameterizes mean and variance for each time-stamp with flexible neural networks, resulting in a non-stationary model that can work without the assumption of constant noise as commonly made by existing Markov models. However, such a flexibility may cause the model fragile to anomalies. To achieve robust density estimation which can also benefit detection tasks, we propose a smoothness-inducing prior over possible estimations. The proposed prior works as a regularizer that places penalty at non-smooth reconstructions. Our model is learned efficiently with a novel stochastic gradient variational Bayes estimator. In particular, we study two decision criteria for anomaly detection: reconstruction probability and reconstruction error. We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.


Dense Adaptive Cascade Forest: A Densely Connected Deep Ensemble for Classification Problems

arXiv.org Machine Learning

Recent research has shown that deep ensemble for forest can achieve a huge increase in classification accuracy compared with the general ensemble learning method. Especially when there are only few training data. In this paper, we decide to take full advantage of this observation and introduce the Dense Adaptive Cascade Forest (daForest), which has better performance than the original one named Cascade Forest. And it is particularly noteworthy that daForest has a powerful ability to handle high-dimensional sparse data without any preprocessing on raw data like PCA or any other dimensional reduction methods. Our model is distinguished by three major features: the first feature is the combination of the SAMME.R boosting algorithm in the model, boosting gives the model the ability to continuously improve as the number of layer increases, which is not possible in stacking model or plain cascade forest. The second feature is our model connects each layer to its subsequent layers in a feed-forward fashion, to some extent this structure enhances the ability of the model to resist degeneration. When number of layers goes up, accuracy of model goes up a little in the first few layers then drop down quickly, we call this phenomenon degeneration in training stacking model. The third feature is that we add a hyper-parameter optimization layer before the first classification layer in the proposed deep model, which can search for the optimal hyper-parameter and set up the model in a brief period and nearly halve the training time without having too much impact on the final performance. Experimental results show that daForest performs particularly well on both high-dimensional low-order features and low-dimensional high-order features, and in some cases, even better than neural networks and achieves state-of-the-art results.