Goto

Collaborating Authors

 Wang, Haifeng


Towards Boosting Many-to-Many Multilingual Machine Translation with Large Language Models

arXiv.org Artificial Intelligence

The training paradigm for machine translation has gradually shifted, from learning neural machine translation (NMT) models with extensive parallel corpora to instruction finetuning on multilingual large language models (LLMs) with high-quality translation pairs. In this paper, we focus on boosting many-to-many multilingual translation of LLMs with an emphasis on zero-shot translation directions. We demonstrate that prompt strategies adopted during finetuning are crucial to zero-shot translation and introduce a cross-lingual consistency regularization, XConST, to bridge the representation gap among different languages and improve zero-shot translation performance. XConST is not a new method, but a version of CrossConST (Gao et al., 2023a) adapted for translation instruction finetuning with LLMs. Experimental results on ALMA (Xu et al., 2023), Tower (Team, 2024), and LLaMA-2 (Touvron et al., 2023) show that our approach consistently improves translation performance. Our implementations are available at https://github.com/gpengzhi/CrossConST-LLM.


GLS-CSC: A Simple but Effective Strategy to Mitigate Chinese STM Models' Over-Reliance on Superficial Clue

arXiv.org Artificial Intelligence

Pre-trained models have achieved success in Chinese Short Text Matching (STM) tasks, but they often rely on superficial clues, leading to a lack of robust predictions. To address this issue, it is crucial to analyze and mitigate the influence of superficial clues on STM models. Our study aims to investigate their over-reliance on the edit distance feature, commonly used to measure the semantic similarity of Chinese text pairs, which can be considered a superficial clue. To mitigate STM models' over-reliance on superficial clues, we propose a novel resampling training strategy called Gradually Learn Samples Containing Superficial Clue (GLS-CSC). Through comprehensive evaluations of In-Domain (I.D.), Robustness (Rob.), and Out-Of-Domain (O.O.D.) test sets, we demonstrate that GLS-CSC outperforms existing methods in terms of enhancing the robustness and generalization of Chinese STM models. Moreover, we conduct a detailed analysis of existing methods and reveal their commonality.


Dual Meta-Learning with Longitudinally Generalized Regularization for One-Shot Brain Tissue Segmentation Across the Human Lifespan

arXiv.org Artificial Intelligence

Brain tissue segmentation is essential for neuroscience and clinical studies. However, segmentation on longitudinal data is challenging due to dynamic brain changes across the lifespan. Previous researches mainly focus on self-supervision with regularizations and will lose longitudinal generalization when fine-tuning on a specific age group. In this paper, we propose a dual meta-learning paradigm to learn longitudinally consistent representations and persist when fine-tuning. Specifically, we learn a plug-and-play feature extractor to extract longitudinal-consistent anatomical representations by meta-feature learning and a well-initialized task head for fine-tuning by meta-initialization learning. Besides, two class-aware regularizations are proposed to encourage longitudinal consistency. Experimental results on the iSeg2019 and ADNI datasets demonstrate the effectiveness of our method. Our code is available at https://github.com/ladderlab-xjtu/DuMeta.


Dynamic Dual-Graph Fusion Convolutional Network For Alzheimer's Disease Diagnosis

arXiv.org Artificial Intelligence

In this paper, a dynamic dual-graph fusion convolutional network is proposed to improve Alzheimer's disease (AD) diagnosis performance. The following are the paper's main contributions: (a) propose a novel dynamic GCN architecture, which is an end-to-end pipeline for diagnosis of the AD task; (b) the proposed architecture can dynamically adjust the graph structure for GCN to produce better diagnosis outcomes by learning the optimal underlying latent graph; (c) incorporate feature graph learning and dynamic graph learning, giving those useful features of subjects more weight while decreasing the weights of other noise features. Experiments indicate that our model provides flexibility and stability while achieving excellent classification results in AD diagnosis.


Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation

arXiv.org Artificial Intelligence

Knowledge-intensive tasks (e.g., open-domain question answering (QA)) require a substantial amount of factual knowledge and often rely on external information for assistance. Recently, large language models (LLMs) (e.g., ChatGPT), have demonstrated impressive prowess in solving a wide range of tasks with world knowledge, including knowledge-intensive tasks. However, it remains unclear how well LLMs are able to perceive their factual knowledge boundaries, particularly how they behave when incorporating retrieval augmentation. In this study, we present an initial analysis of the factual knowledge boundaries of LLMs and how retrieval augmentation affects LLMs on open-domain QA. Specially, we focus on three primary research questions and analyze them by examining QA performance, priori judgement and posteriori judgement of LLMs. We show evidence that LLMs possess unwavering confidence in their capabilities to respond to questions and the accuracy of their responses. Furthermore, retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries, thereby improving their judgemental abilities. Additionally, we also find that LLMs have a propensity to rely on the provided retrieval results when formulating answers, while the quality of these results significantly impacts their reliance. The code to reproduce this work is available at https://github.com/RUCAIBox/LLM-Knowledge-Boundary.


Less Learn Shortcut: Analyzing and Mitigating Learning of Spurious Feature-Label Correlation

arXiv.org Artificial Intelligence

Recent research has revealed that deep neural networks often take dataset biases as a shortcut to make decisions rather than understand tasks, leading to failures in real-world applications. In this study, we focus on the spurious correlation between word features and labels that models learn from the biased data distribution of training data. In particular, we define the word highly co-occurring with a specific label as biased word, and the example containing biased word as biased example. Our analysis shows that biased examples are easier for models to learn, while at the time of prediction, biased words make a significantly higher contribution to the models' predictions, and models tend to assign predicted labels over-relying on the spurious correlation between words and labels. To mitigate models' over-reliance on the shortcut (i.e. spurious correlation), we propose a training strategy Less-Learn-Shortcut (LLS): our strategy quantifies the biased degree of the biased examples and down-weights them accordingly. Experimental results on Question Matching, Natural Language Inference and Sentiment Analysis tasks show that LLS is a task-agnostic strategy and can improve the model performance on adversarial data while maintaining good performance on in-domain data.


Learning Multilingual Sentence Representations with Cross-lingual Consistency Regularization

arXiv.org Artificial Intelligence

Multilingual sentence representations are the foundation for similarity-based bitext mining, which is crucial for scaling multilingual neural machine translation (NMT) system to more languages. In this paper, we introduce MuSR: a one-for-all Multilingual Sentence Representation model that supports more than 220 languages. Leveraging billions of English-centric parallel corpora, we train a multilingual Transformer encoder, coupled with an auxiliary Transformer decoder, by adopting a multilingual NMT framework with CrossConST, a cross-lingual consistency regularization technique proposed in Gao et al. (2023). Experimental results on multilingual similarity search and bitext mining tasks show the effectiveness of our approach. Specifically, MuSR achieves superior performance over LASER3 (Heffernan et al., 2022) which consists of 148 independent multilingual sentence encoders.


Improving Zero-shot Multilingual Neural Machine Translation by Leveraging Cross-lingual Consistency Regularization

arXiv.org Artificial Intelligence

The multilingual neural machine translation (NMT) model has a promising capability of zero-shot translation, where it could directly translate between language pairs unseen during training. For good transfer performance from supervised directions to zero-shot directions, the multilingual NMT model is expected to learn universal representations across different languages. This paper introduces a cross-lingual consistency regularization, CrossConST, to bridge the representation gap among different languages and boost zero-shot translation performance. The theoretical analysis shows that CrossConST implicitly maximizes the probability distribution for zero-shot translation, and the experimental results on both low-resource and high-resource benchmarks show that CrossConST consistently improves the translation performance. The experimental analysis also proves that CrossConST could close the sentence representation gap and better align the representation space. Given the universality and simplicity of CrossConST, we believe it can serve as a strong baseline for future multilingual NMT research.


Synthesizing PET images from High-field and Ultra-high-field MR images Using Joint Diffusion Attention Model

arXiv.org Artificial Intelligence

MRI and PET are crucial diagnostic tools for brain diseases, as they provide complementary information on brain structure and function. However, PET scanning is costly and involves radioactive exposure, resulting in a lack of PET. Moreover, simultaneous PET and MRI at ultra-high-field are currently hardly infeasible. Ultra-high-field imaging has unquestionably proven valuable in both clinical and academic settings, especially in the field of cognitive neuroimaging. These motivate us to propose a method for synthetic PET from high-filed MRI and ultra-high-field MRI. From a statistical perspective, the joint probability distribution (JPD) is the most direct and fundamental means of portraying the correlation between PET and MRI. This paper proposes a novel joint diffusion attention model which has the joint probability distribution and attention strategy, named JDAM. JDAM has a diffusion process and a sampling process. The diffusion process involves the gradual diffusion of PET to Gaussian noise by adding Gaussian noise, while MRI remains fixed. JPD of MRI and noise-added PET was learned in the diffusion process. The sampling process is a predictor-corrector. PET images were generated from MRI by JPD of MRI and noise-added PET. The predictor is a reverse diffusion process and the corrector is Langevin dynamics. Experimental results on the public Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that the proposed method outperforms state-of-the-art CycleGAN for high-field MRI (3T MRI). Finally, synthetic PET images from the ultra-high-field (5T MRI and 7T MRI) be attempted, providing a possibility for ultra-high-field PET-MRI imaging.


Meta-Learning Enabled Score-Based Generative Model for 1.5T-Like Image Reconstruction from 0.5T MRI

arXiv.org Artificial Intelligence

Magnetic resonance imaging (MRI) is known to have reduced signal-to-noise ratios (SNR) at lower field strengths, leading to signal degradation when producing a low-field MRI image from a high-field one. Therefore, reconstructing a high-field-like image from a low-field MRI is a complex problem due to the ill-posed nature of the task. Additionally, obtaining paired low-field and high-field MR images is often not practical. We theoretically uncovered that the combination of these challenges renders conventional deep learning methods that directly learn the mapping from a low-field MR image to a high-field MR image unsuitable. To overcome these challenges, we introduce a novel meta-learning approach that employs a teacher-student mechanism. Firstly, an optimal-transport-driven teacher learns the degradation process from high-field to low-field MR images and generates pseudo-paired high-field and low-field MRI images. Then, a score-based student solves the inverse problem of reconstructing a high-field-like MR image from a low-field MRI within the framework of iterative regularization, by learning the joint distribution of pseudo-paired images to act as a regularizer. Experimental results on real low-field MRI data demonstrate that our proposed method outperforms state-of-the-art unpaired learning methods.