Goto

Collaborating Authors

 Wang, Guohui


Formalization of Robot Collision Detection Method based on Conformal Geometric Algebra

arXiv.org Artificial Intelligence

Cooperative robots can significantly assist people in their productive activities, improving the quality of their works. Collision detection is vital to ensure the safe and stable operation of cooperative robots in productive activities. As an advanced geometric language, conformal geometric algebra can simplify the construction of the robot collision model and the calculation of collision distance. Compared with the formal method based on conformal geometric algebra, the traditional method may have some defects which are difficult to find in the modelling and calculation. We use the formal method based on conformal geometric algebra to study the collision detection problem of cooperative robots. This paper builds formal models of geometric primitives and the robot body based on the conformal geometric algebra library in HOL Light. We analyse the shortest distance between geometric primitives and prove their collision determination conditions. Based on the above contents, we construct a formal verification framework for the robot collision detection method. By the end of this paper, we apply the proposed framework to collision detection between two single-arm industrial cooperative robots. The flexibility and reliability of the proposed framework are verified by constructing a general collision model and a special collision model for two single-arm industrial cooperative robots.


Research on Event Accumulator Settings for Event-Based SLAM

arXiv.org Artificial Intelligence

Event cameras are a new type of sensors that are different from traditional cameras. Each pixel is triggered asynchronously by event. The trigger event is the change of the brightness irradiated on the pixel. If the increment or decrement of brightness is higher than a certain threshold, an event is output. Compared with traditional cameras, event cameras have the advantages of high dynamic range and no motion blur. Accumulating events to frames and using traditional SLAM algorithm is a direct and efficient way for event-based SLAM. Different event accumulator settings, such as slice method of event stream, processing method for no motion, using polarity or not, decay function and event contribution, can cause quite different accumulating results. We conducted the research on how to accumulate event frames to achieve a better event-based SLAM performance. For experiment verification, accumulated event frames are fed to the traditional SLAM system to construct an event-based SLAM system. Our strategy of setting event accumulator has been evaluated on the public dataset. The experiment results show that our method can achieve better performance in most sequences compared with the state-of-the-art event frame based SLAM algorithm. In addition, the proposed approach has been tested on a quadrotor UAV to show the potential of applications in real scenario. Code and results are open sourced to benefit the research community of event cameras


A Benchmark for Multi-UAV Task Assignment of an Extended Team Orienteering Problem

arXiv.org Artificial Intelligence

A benchmark for multi-UAV task assignment is presented in order to evaluate different algorithms. An extended Team Orienteering Problem is modeled for a kind of multi-UAV task assignment problem. Three intelligent algorithms, i.e., Genetic Algorithm, Ant Colony Optimization and Particle Swarm Optimization are implemented to solve the problem. A series of experiments with different settings are conducted to evaluate three algorithms. The modeled problem and the evaluation results constitute a benchmark, which can be used to evaluate other algorithms used for multi-UAV task assignment problems.