Wang, Guangyu
Estimating LLM Uncertainty with Logits
Ma, Huan, Chen, Jingdong, Wang, Guangyu, Zhang, Changqing
In recent years, Large Language Models (LLMs) have seen remarkable advancements and have been extensively integrated across various fields. Despite their progress, LLMs are prone to hallucinations, producing responses that may not be dependable if the models lack sufficient grounding knowledge. To mitigate this issue, methods for estimating uncertainty have been adopted, with a focus on critical tokens as indicators of reliability. Nevertheless, probability-based approaches have shown limitations in assessing token-level reliability due to the erosion of evidence strength information acquired during training. In this paper, we introduce Logits-induced Token Uncertainty (LogU), a novel framework designed to estimate token-specific uncertainty in LLMs in real time, without the need for multiple sampling rounds. By leveraging evidence modeling for the implementation of LogU, we utilize the derived uncertainty measures to steer downstream tasks. Our experimental findings highlight the substantial effectiveness and potential of LogU, marking a significant advancement in addressing the challenge of model hallucinations.
Privacy-Preserving Federated Foundation Model for Generalist Ultrasound Artificial Intelligence
Jiang, Yuncheng, Feng, Chun-Mei, Ren, Jinke, Wei, Jun, Zhang, Zixun, Hu, Yiwen, Liu, Yunbi, Sun, Rui, Tang, Xuemei, Du, Juan, Wan, Xiang, Xu, Yong, Du, Bo, Gao, Xin, Wang, Guangyu, Zhou, Shaohua, Cui, Shuguang, Goh, Rick Siow Mong, Liu, Yong, Li, Zhen
Ultrasound imaging is widely used in clinical diagnosis due to its non-invasive nature and real-time capabilities. However, conventional ultrasound diagnostics face several limitations, including high dependence on physician expertise and suboptimal image quality, which complicates interpretation and increases the likelihood of diagnostic errors. Artificial intelligence (AI) has emerged as a promising solution to enhance clinical diagnosis, particularly in detecting abnormalities across various biomedical imaging modalities. Nonetheless, current AI models for ultrasound imaging face critical challenges. First, these models often require large volumes of labeled medical data, raising concerns over patient privacy breaches. Second, most existing models are task-specific, which restricts their broader clinical utility. To overcome these challenges, we present UltraFedFM, an innovative privacy-preserving ultrasound foundation model. UltraFedFM is collaboratively pre-trained using federated learning across 16 distributed medical institutions in 9 countries, leveraging a dataset of over 1 million ultrasound images covering 19 organs and 10 ultrasound modalities. This extensive and diverse data, combined with a secure training framework, enables UltraFedFM to exhibit strong generalization and diagnostic capabilities. It achieves an average area under the receiver operating characteristic curve of 0.927 for disease diagnosis and a dice similarity coefficient of 0.878 for lesion segmentation. Notably, UltraFedFM surpasses the diagnostic accuracy of mid-level ultrasonographers and matches the performance of expert-level sonographers in the joint diagnosis of 8 common systemic diseases. These findings indicate that UltraFedFM can significantly enhance clinical diagnostics while safeguarding patient privacy, marking an advancement in AI-driven ultrasound imaging for future clinical applications.
A Time Series is Worth Five Experts: Heterogeneous Mixture of Experts for Traffic Flow Prediction
Wang, Guangyu, Chen, Yujie, Gao, Ming, Wu, Zhiqiao, Tang, Jiafu, Zhao, Jiabi
Accurate traffic prediction faces significant challenges, necessitating a deep understanding of both temporal and spatial cues and their complex interactions across multiple variables. Recent advancements in traffic prediction systems are primarily due to the development of complex sequence-centric models. However, existing approaches often embed multiple variables and spatial relationships at each time step, which may hinder effective variable-centric learning, ultimately leading to performance degradation in traditional traffic prediction tasks. To overcome these limitations, we introduce variable-centric and prior knowledge-centric modeling techniques. Specifically, we propose a Heterogeneous Mixture of Experts (TITAN) model for traffic flow prediction. TITAN initially consists of three experts focused on sequence-centric modeling. Then, designed a low-rank adaptive method, TITAN simultaneously enables variable-centric modeling. Furthermore, we supervise the gating process using a prior knowledge-centric modeling strategy to ensure accurate routing. Experiments on two public traffic network datasets, METR-LA and PEMS-BAY, demonstrate that TITAN effectively captures variable-centric dependencies while ensuring accurate routing. Consequently, it achieves improvements in all evaluation metrics, ranging from approximately 4.37\% to 11.53\%, compared to previous state-of-the-art (SOTA) models. The code is open at \href{https://github.com/sqlcow/TITAN}{https://github.com/sqlcow/TITAN}.
CoPRA: Bridging Cross-domain Pretrained Sequence Models with Complex Structures for Protein-RNA Binding Affinity Prediction
Han, Rong, Liu, Xiaohong, Pan, Tong, Xu, Jing, Wang, Xiaoyu, Lan, Wuyang, Li, Zhenyu, Wang, Zixuan, Song, Jiangning, Wang, Guangyu, Chen, Ting
Accurately measuring protein-RNA binding affinity is crucial in many biological processes and drug design. Previous computational methods for protein-RNA binding affinity prediction rely on either sequence or structure features, unable to capture the binding mechanisms comprehensively. The recent emerging pre-trained language models trained on massive unsupervised sequences of protein and RNA have shown strong representation ability for various in-domain downstream tasks, including binding site prediction. However, applying different-domain language models collaboratively for complex-level tasks remains unexplored. In this paper, we propose CoPRA to bridge pre-trained language models from different biological domains via Complex structure for Protein-RNA binding Affinity prediction. We demonstrate for the first time that cross-biological modal language models can collaborate to improve binding affinity prediction. We propose a Co-Former to combine the cross-modal sequence and structure information and a bi-scope pre-training strategy for improving Co-Former's interaction understanding. Meanwhile, we build the largest protein-RNA binding affinity dataset PRA310 for performance evaluation. We also test our model on a public dataset for mutation effect prediction. CoPRA reaches state-of-the-art performance on all the datasets. We provide extensive analyses and verify that CoPRA can (1) accurately predict the protein-RNA binding affinity; (2) understand the binding affinity change caused by mutations; and (3) benefit from scaling data and model size.
SA-FedLora: Adaptive Parameter Allocation for Efficient Federated Learning with LoRA Tuning
Yang, Yuning, Liu, Xiaohong, Gao, Tianrun, Xu, Xiaodong, Wang, Guangyu
Fine-tuning large-scale pre-trained models via transfer learning is an emerging important paradigm for a wide range of downstream tasks, with performance heavily reliant on extensive data. Federated learning (FL), as a distributed framework, provides a secure solution to train models on local datasets while safeguarding raw sensitive data. However, FL networks encounter high communication costs due to the massive parameters of large-scale pre-trained models, necessitating parameter-efficient methods. Notably, parameter efficient fine tuning, such as Low-Rank Adaptation (LoRA), has shown remarkable success in fine-tuning pre-trained models. However, prior research indicates that the fixed parameter budget may be prone to the overfitting or slower convergence. To address this challenge, we propose a Simulated Annealing-based Federated Learning with LoRA tuning (SA-FedLoRA) approach by reducing trainable parameters. Specifically, SA-FedLoRA comprises two stages: initiating and annealing. (1) In the initiating stage, we implement a parameter regularization approach during the early rounds of aggregation, aiming to mitigate client drift and accelerate the convergence for the subsequent tuning. (2) In the annealing stage, we allocate higher parameter budget during the early 'heating' phase and then gradually shrink the budget until the 'cooling' phase. This strategy not only facilitates convergence to the global optimum but also reduces communication costs. Experimental results demonstrate that SA-FedLoRA is an efficient FL, achieving superior performance to FedAvg and significantly reducing communication parameters by up to 93.62%.
MoVL:Exploring Fusion Strategies for the Domain-Adaptive Application of Pretrained Models in Medical Imaging Tasks
Tian, Haijiang, Yue, Jingkun, Liu, Xiaohong, Yang, Guoxing, Jiang, Zeyu, Wang, Guangyu
Medical images are often more difficult to acquire than natural images due to the specialism of the equipment and technology, which leads to less medical image datasets. So it is hard to train a strong pretrained medical vision model. How to make the best of natural pretrained vision model and adapt in medical domain still pends. For image classification, a popular method is linear probe (LP). However, LP only considers the output after feature extraction. Yet, there exists a gap between input medical images and natural pretrained vision model. We introduce visual prompting (VP) to fill in the gap, and analyze the strategies of coupling between LP and VP. We design a joint learning loss function containing categorisation loss and discrepancy loss, which describe the variance of prompted and plain images, naming this joint training strategy MoVL (Mixture of Visual Prompting and Linear Probe). We experiment on 4 medical image classification datasets, with two mainstream architectures, ResNet and CLIP. Results shows that without changing the parameters and architecture of backbone model and with less parameters, there is potential for MoVL to achieve full finetune (FF) accuracy (on four medical datasets, average 90.91% for MoVL and 91.13% for FF). On out of distribution medical dataset, our method(90.33%) can outperform FF (85.15%) with absolute 5.18 % lead.
A Comprehensive Dataset and Automated Pipeline for Nailfold Capillary Analysis
Zhao, Linxi, Tang, Jiankai, Chen, Dongyu, Liu, Xiaohong, Zhou, Yong, Wang, Guangyu, Wang, Yuntao
The introduction of machine learning marks a pivotal shift, presenting Nailfold capillaroscopy is a well-established method for automated medical image analysis as a promising alternative assessing health conditions, but the untapped potential of automated due to its higher accuracy compared to traditional image medical image analysis using machine learning remains processing algorithms[5]. Recent studies have attempted to despite recent advancements. In this groundbreaking use single deep-learning models for tasks such as nailfold study, we present a pioneering effort in constructing a comprehensive capillary segmentation[4, 8], measurement of capillary size dataset--321 images, 219 videos, 68 clinic reports, and density[5], and white cell counting[9]. Despite notable with expert annotations--that serves as a crucial resource achievements, the untapped potential of automated medical for training deep-learning models. Leveraging this image analysis persists due to the urgent need for annotated dataset, we propose an end-to-end nailfold capillary analysis and extensive datasets essential for effective training and pipeline capable of automatically detecting and measuring diverse fine-tuning deep neural networks.
TCM-GPT: Efficient Pre-training of Large Language Models for Domain Adaptation in Traditional Chinese Medicine
Yang, Guoxing, Shi, Jianyu, Wang, Zan, Liu, Xiaohong, Wang, Guangyu
Pre-training and fine-tuning have emerged as a promising paradigm across various natural language processing (NLP) tasks. The effectiveness of pretrained large language models (LLM) has witnessed further enhancement, holding potential for applications in the field of medicine, particularly in the context of Traditional Chinese Medicine (TCM). However, the application of these general models to specific domains often yields suboptimal results, primarily due to challenges like lack of domain knowledge, unique objectives, and computational efficiency. Furthermore, their effectiveness in specialized domains, such as Traditional Chinese Medicine, requires comprehensive evaluation. To address the above issues, we propose a novel domain specific TCMDA (TCM Domain Adaptation) approach, efficient pre-training with domain-specific corpus. Specifically, we first construct a large TCM-specific corpus, TCM-Corpus-1B, by identifying domain keywords and retreving from general corpus. Then, our TCMDA leverages the LoRA which freezes the pretrained model's weights and uses rank decomposition matrices to efficiently train specific dense layers for pre-training and fine-tuning, efficiently aligning the model with TCM-related tasks, namely TCM-GPT-7B. We further conducted extensive experiments on two TCM tasks, including TCM examination and TCM diagnosis. TCM-GPT-7B archived the best performance across both datasets, outperforming other models by relative increments of 17% and 12% in accuracy, respectively. To the best of our knowledge, our study represents the pioneering validation of domain adaptation of a large language model with 7 billion parameters in TCM domain. We will release both TCMCorpus-1B and TCM-GPT-7B model once accepted to facilitate interdisciplinary development in TCM and NLP, serving as the foundation for further study.
ClinicalGPT: Large Language Models Finetuned with Diverse Medical Data and Comprehensive Evaluation
Wang, Guangyu, Yang, Guoxing, Du, Zongxin, Fan, Longjun, Li, Xiaohu
Large language models have exhibited exceptional performance on various Natural Language Processing (NLP) tasks, leveraging techniques such as the pre-training, and instruction fine-tuning. Despite these advances, their effectiveness in medical applications is limited, due to challenges such as factual inaccuracies, reasoning abilities, and lack grounding in real-world experience. In this study, we present ClinicalGPT, a language model explicitly designed and optimized for clinical scenarios. By incorporating extensive and diverse real-world data, such as medical records, domain-specific knowledge, and multi-round dialogue consultations in the training process, ClinicalGPT is better prepared to handle multiple clinical task. Furthermore, we introduce a comprehensive evaluation framework that includes medical knowledge question-answering, medical exams, patient consultations, and diagnostic analysis of medical records. Our results demonstrate that ClinicalGPT significantly outperforms other models in these tasks, highlighting the effectiveness of our approach in adapting large language models to the critical domain of healthcare.
Self adaptive global-local feature enhancement for radiology report generation
Wang, Yuhao, Wang, Kai, Liu, Xiaohong, Gao, Tianrun, Zhang, Jingyue, Wang, Guangyu
Automated radiology report generation aims at automatically generating a detailed description of medical images, which can greatly alleviate the workload of radiologists and provide better medical services to remote areas. Most existing works pay attention to the holistic impression of medical images, failing to utilize important anatomy information. However, in actual clinical practice, radiologists usually locate important anatomical structures, and then look for signs of abnormalities in certain structures and reason the underlying disease. In this paper, we propose a novel framework AGFNet to dynamically fuse the global and anatomy region feature to generate multi-grained radiology report. Firstly, we extract important anatomy region features and global features of input Chest X-ray (CXR). Then, with the region features and the global features as input, our proposed self-adaptive fusion gate module could dynamically fuse multi-granularity information. Finally, the captioning generator generates the radiology reports through multi-granularity features. Experiment results illustrate that our model achieved the state-of-the-art performance on two benchmark datasets including the IU X-Ray and MIMIC-CXR. Further analyses also prove that our model is able to leverage the multi-grained information from radiology images and texts so as to help generate more accurate reports.