Wang, Guangjing
Beyond Boundaries: A Comprehensive Survey of Transferable Attacks on AI Systems
Wang, Guangjing, Zhou, Ce, Wang, Yuanda, Chen, Bocheng, Guo, Hanqing, Yan, Qiben
Artificial Intelligence (AI) systems such as autonomous vehicles, facial recognition, and speech recognition systems are increasingly integrated into our daily lives. However, despite their utility, these AI systems are vulnerable to a wide range of attacks such as adversarial, backdoor, data poisoning, membership inference, model inversion, and model stealing attacks. In particular, numerous attacks are designed to target a particular model or system, yet their effects can spread to additional targets, referred to as transferable attacks. Although considerable efforts have been directed toward developing transferable attacks, a holistic understanding of the advancements in transferable attacks remains elusive. In this paper, we comprehensively explore learning-based attacks from the perspective of transferability, particularly within the context of cyber-physical security. We delve into different domains -- the image, text, graph, audio, and video domains -- to highlight the ubiquitous and pervasive nature of transferable attacks. This paper categorizes and reviews the architecture of existing attacks from various viewpoints: data, process, model, and system. We further examine the implications of transferable attacks in practical scenarios such as autonomous driving, speech recognition, and large language models (LLMs). Additionally, we outline the potential research directions to encourage efforts in exploring the landscape of transferable attacks. This survey offers a holistic understanding of the prevailing transferable attacks and their impacts across different domains.
PhantomSound: Black-Box, Query-Efficient Audio Adversarial Attack via Split-Second Phoneme Injection
Guo, Hanqing, Wang, Guangjing, Wang, Yuanda, Chen, Bocheng, Yan, Qiben, Xiao, Li
In this paper, we propose PhantomSound, a query-efficient black-box attack toward voice assistants. Existing black-box adversarial attacks on voice assistants either apply substitution models or leverage the intermediate model output to estimate the gradients for crafting adversarial audio samples. However, these attack approaches require a significant amount of queries with a lengthy training stage. PhantomSound leverages the decision-based attack to produce effective adversarial audios, and reduces the number of queries by optimizing the gradient estimation. In the experiments, we perform our attack against 4 different speech-to-text APIs under 3 real-world scenarios to demonstrate the real-time attack impact. The results show that PhantomSound is practical and robust in attacking 5 popular commercial voice controllable devices over the air, and is able to bypass 3 liveness detection mechanisms with >95% success rate. The benchmark result shows that PhantomSound can generate adversarial examples and launch the attack in a few minutes. We significantly enhance the query efficiency and reduce the cost of a successful untargeted and targeted adversarial attack by 93.1% and 65.5% compared with the state-of-the-art black-box attacks, using merely ~300 queries (~5 minutes) and ~1,500 queries (~25 minutes), respectively.
DynamicFL: Balancing Communication Dynamics and Client Manipulation for Federated Learning
Chen, Bocheng, Ivanov, Nikolay, Wang, Guangjing, Yan, Qiben
Federated Learning (FL) is a distributed machine learning (ML) paradigm, aiming to train a global model by exploiting the decentralized data across millions of edge devices. Compared with centralized learning, FL preserves the clients' privacy by refraining from explicitly downloading their data. However, given the geo-distributed edge devices (e.g., mobile, car, train, or subway) with highly dynamic networks in the wild, aggregating all the model updates from those participating devices will result in inevitable long-tail delays in FL. This will significantly degrade the efficiency of the training process. To resolve the high system heterogeneity in time-sensitive FL scenarios, we propose a novel FL framework, DynamicFL, by considering the communication dynamics and data quality across massive edge devices with a specially designed client manipulation strategy. \ours actively selects clients for model updating based on the network prediction from its dynamic network conditions and the quality of its training data. Additionally, our long-term greedy strategy in client selection tackles the problem of system performance degradation caused by short-term scheduling in a dynamic network. Lastly, to balance the trade-off between client performance evaluation and client manipulation granularity, we dynamically adjust the length of the observation window in the training process to optimize the long-term system efficiency. Compared with the state-of-the-art client selection scheme in FL, \ours can achieve a better model accuracy while consuming only 18.9\% -- 84.0\% of the wall-clock time. Our component-wise and sensitivity studies further demonstrate the robustness of \ours under various real-life scenarios.
Understanding Multi-Turn Toxic Behaviors in Open-Domain Chatbots
Chen, Bocheng, Wang, Guangjing, Guo, Hanqing, Wang, Yuanda, Yan, Qiben
Recent advances in natural language processing and machine learning have led to the development of chatbot models, such as ChatGPT, that can engage in conversational dialogue with human users. However, the ability of these models to generate toxic or harmful responses during a non-toxic multi-turn conversation remains an open research question. Existing research focuses on single-turn sentence testing, while we find that 82\% of the individual non-toxic sentences that elicit toxic behaviors in a conversation are considered safe by existing tools. In this paper, we design a new attack, \toxicbot, by fine-tuning a chatbot to engage in conversation with a target open-domain chatbot. The chatbot is fine-tuned with a collection of crafted conversation sequences. Particularly, each conversation begins with a sentence from a crafted prompt sentences dataset. Our extensive evaluation shows that open-domain chatbot models can be triggered to generate toxic responses in a multi-turn conversation. In the best scenario, \toxicbot achieves a 67\% activation rate. The conversation sequences in the fine-tuning stage help trigger the toxicity in a conversation, which allows the attack to bypass two defense methods. Our findings suggest that further research is needed to address chatbot toxicity in a dynamic interactive environment. The proposed \toxicbot can be used by both industry and researchers to develop methods for detecting and mitigating toxic responses in conversational dialogue and improve the robustness of chatbots for end users.
A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT
Zhou, Ce, Li, Qian, Li, Chen, Yu, Jun, Liu, Yixin, Wang, Guangjing, Zhang, Kai, Ji, Cheng, Yan, Qiben, He, Lifang, Peng, Hao, Li, Jianxin, Wu, Jia, Liu, Ziwei, Xie, Pengtao, Xiong, Caiming, Pei, Jian, Yu, Philip S., Sun, Lichao
Pretrained Foundation Models (PFMs) are regarded as the foundation for various downstream tasks with different data modalities. A PFM (e.g., BERT, ChatGPT, and GPT-4) is trained on large-scale data which provides a reasonable parameter initialization for a wide range of downstream applications. BERT learns bidirectional encoder representations from Transformers, which are trained on large datasets as contextual language models. Similarly, the generative pretrained transformer (GPT) method employs Transformers as the feature extractor and is trained using an autoregressive paradigm on large datasets. Recently, ChatGPT shows promising success on large language models, which applies an autoregressive language model with zero shot or few shot prompting. The remarkable achievements of PFM have brought significant breakthroughs to various fields of AI. Numerous studies have proposed different methods, raising the demand for an updated survey. This study provides a comprehensive review of recent research advancements, challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities. The review covers the basic components and existing pretraining methods used in natural language processing, computer vision, and graph learning. Additionally, it explores advanced PFMs used for different data modalities and unified PFMs that consider data quality and quantity. The review also discusses research related to the fundamentals of PFMs, such as model efficiency and compression, security, and privacy. Finally, the study provides key implications, future research directions, challenges, and open problems in the field of PFMs. Overall, this survey aims to shed light on the research of the PFMs on scalability, security, logical reasoning ability, cross-domain learning ability, and the user-friendly interactive ability for artificial general intelligence.