Wang, Ganghua
Model Privacy: A Unified Framework to Understand Model Stealing Attacks and Defenses
Wang, Ganghua, Yang, Yuhong, Ding, Jie
The use of machine learning (ML) has become increasingly prevalent in various domains, highlighting the importance of understanding and ensuring its safety. One pressing concern is the vulnerability of ML applications to model stealing attacks. These attacks involve adversaries attempting to recover a learned model through limited query-response interactions, such as those found in cloud-based services or on-chip artificial intelligence interfaces. While existing literature proposes various attack and defense strategies, these often lack a theoretical foundation and standardized evaluation criteria. In response, this work presents a framework called ``Model Privacy'', providing a foundation for comprehensively analyzing model stealing attacks and defenses. We establish a rigorous formulation for the threat model and objectives, propose methods to quantify the goodness of attack and defense strategies, and analyze the fundamental tradeoffs between utility and privacy in ML models. Our developed theory offers valuable insights into enhancing the security of ML models, especially highlighting the importance of the attack-specific structure of perturbations for effective defenses. We demonstrate the application of model privacy from the defender's perspective through various learning scenarios. Extensive experiments corroborate the insights and the effectiveness of defense mechanisms developed under the proposed framework.
Drift to Remember
Du, Jin, Zhang, Xinhe, Shen, Hao, Xian, Xun, Wang, Ganghua, Zhang, Jiawei, Yang, Yuhong, Li, Na, Liu, Jia, Ding, Jie
Lifelong learning in artificial intelligence (AI) aims to mimic the biological brain's ability to continuously learn and retain knowledge, yet it faces challenges such as catastrophic forgetting. Recent neuroscience research suggests that neural activity in biological systems undergoes representational drift, where neural responses evolve over time, even with consistent inputs and tasks. We hypothesize that representational drift can alleviate catastrophic forgetting in AI during new task acquisition. To test this, we introduce DriftNet, a network designed to constantly explore various local minima in the loss landscape while dynamically retrieving relevant tasks. This approach ensures efficient integration of new information and preserves existing knowledge. Experimental studies in image classification and natural language processing demonstrate that DriftNet outperforms existing models in lifelong learning. Importantly, DriftNet is scalable in handling a sequence of tasks such as sentiment analysis and question answering using large language models (LLMs) with billions of parameters on a single Nvidia A100 GPU. DriftNet efficiently updates LLMs using only new data, avoiding the need for full dataset retraining. Tested on GPT-2 and RoBERTa, DriftNet is a robust, cost-effective solution for lifelong learning in LLMs. This study not only advances AI systems to emulate biological learning, but also provides insights into the adaptive mechanisms of biological neural systems, deepening our understanding of lifelong learning in nature.
On the Vulnerability of Applying Retrieval-Augmented Generation within Knowledge-Intensive Application Domains
Xian, Xun, Wang, Ganghua, Bi, Xuan, Srinivasa, Jayanth, Kundu, Ashish, Fleming, Charles, Hong, Mingyi, Ding, Jie
Retrieval-Augmented Generation (RAG) has been empirically shown to enhance the performance of large language models (LLMs) in knowledge-intensive domains such as healthcare, finance, and legal contexts. Given a query, RAG retrieves relevant documents from a corpus and integrates them into the LLMs' generation process. In this study, we investigate the adversarial robustness of RAG, focusing specifically on examining the retrieval system. First, across 225 different setup combinations of corpus, retriever, query, and targeted information, we show that retrieval systems are vulnerable to universal poisoning attacks in medical Q\&A. In such attacks, adversaries generate poisoned documents containing a broad spectrum of targeted information, such as personally identifiable information. When these poisoned documents are inserted into a corpus, they can be accurately retrieved by any users, as long as attacker-specified queries are used. To understand this vulnerability, we discovered that the deviation from the query's embedding to that of the poisoned document tends to follow a pattern in which the high similarity between the poisoned document and the query is retained, thereby enabling precise retrieval. Based on these findings, we develop a new detection-based defense to ensure the safe use of RAG. Through extensive experiments spanning various Q\&A domains, we observed that our proposed method consistently achieves excellent detection rates in nearly all cases.
RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees
Xian, Xun, Wang, Ganghua, Bi, Xuan, Srinivasa, Jayanth, Kundu, Ashish, Hong, Mingyi, Ding, Jie
Safeguarding intellectual property and preventing potential misuse of AI-generated images are of paramount importance. This paper introduces a robust and agile plug-and-play watermark detection framework, dubbed as RAW. As a departure from traditional encoder-decoder methods, which incorporate fixed binary codes as watermarks within latent representations, our approach introduces learnable watermarks directly into the original image data. Subsequently, we employ a classifier that is jointly trained with the watermark to detect the presence of the watermark. The proposed framework is compatible with various generative architectures and supports on-the-fly watermark injection after training. By incorporating state-of-the-art smoothing techniques, we show that the framework provides provable guarantees regarding the false positive rate for misclassifying a watermarked image, even in the presence of certain adversarial attacks targeting watermark removal. Experiments on a diverse range of images generated by state-of-the-art diffusion models reveal substantial performance enhancements compared to existing approaches. For instance, our method demonstrates a notable increase in AUROC, from 0.48 to 0.82, when compared to state-of-the-art approaches in detecting watermarked images under adversarial attacks, while maintaining image quality, as indicated by closely aligned FID and CLIP scores.
Pruning Deep Neural Networks from a Sparsity Perspective
Diao, Enmao, Wang, Ganghua, Zhan, Jiawei, Yang, Yuhong, Ding, Jie, Tarokh, Vahid
In recent years, deep network pruning has attracted significant attention in order to enable the rapid deployment of AI into small devices with computation and memory constraints. Pruning is often achieved by dropping redundant weights, neurons, or layers of a deep network while attempting to retain a comparable test performance. Many deep pruning algorithms have been proposed with impressive empirical success. However, existing approaches lack a quantifiable measure to estimate the compressibility of a sub-network during each pruning iteration and thus may underprune or over-prune the model. In this work, we propose PQ Index (PQI) to measure the potential compressibility of deep neural networks and use this to develop a Sparsity-informed Adaptive Pruning (SAP) algorithm. Our extensive experiments corroborate the hypothesis that for a generic pruning procedure, PQI decreases first when a large model is being effectively regularized and then increases when its compressibility reaches a limit that appears to correspond to the beginning of underfitting. Subsequently, PQI decreases again when the model collapse and significant deterioration in the performance of the model start to occur. Additionally, our experiments demonstrate that the proposed adaptive pruning algorithm with proper choice of hyper-parameters is superior to the iterative pruning algorithms such as the lottery ticket-based pruning methods, in terms of both compression efficiency and robustness. Our code is available here. These deep neural networks have significantly expanded in size. For example, LeNet-5 (LeCun et al., 1998) (1998; image classification) has 60 thousand parameters whereas GPT-3 (Brown et al., 2020) (2020; language modeling) has 175 billion parameters.
Mitigating Group Bias in Federated Learning: Beyond Local Fairness
Wang, Ganghua, Payani, Ali, Lee, Myungjin, Kompella, Ramana
The issue of group fairness in machine learning models, where certain sub-populations or groups are favored over others, has been recognized for some time. While many mitigation strategies have been proposed in centralized learning, many of these methods are not directly applicable in federated learning, where data is privately stored on multiple clients. To address this, many proposals try to mitigate bias at the level of clients before aggregation, which we call locally fair training. However, the effectiveness of these approaches is not well understood. In this work, we investigate the theoretical foundation of locally fair training by studying the relationship between global model fairness and local model fairness. Additionally, we prove that for a broad class of fairness metrics, the global model's fairness can be obtained using only summary statistics from local clients. Based on that, we propose a globally fair training algorithm that directly minimizes the penalized empirical loss. Real-data experiments demonstrate the promising performance of our proposed approach for enhancing fairness while retaining high accuracy compared to locally fair training methods.
Provable Identifiability of Two-Layer ReLU Neural Networks via LASSO Regularization
Li, Gen, Wang, Ganghua, Ding, Jie
LASSO regularization is a popular regression tool to enhance the prediction accuracy of statistical models by performing variable selection through the $\ell_1$ penalty, initially formulated for the linear model and its variants. In this paper, the territory of LASSO is extended to two-layer ReLU neural networks, a fashionable and powerful nonlinear regression model. Specifically, given a neural network whose output $y$ depends only on a small subset of input $\boldsymbol{x}$, denoted by $\mathcal{S}^{\star}$, we prove that the LASSO estimator can stably reconstruct the neural network and identify $\mathcal{S}^{\star}$ when the number of samples scales logarithmically with the input dimension. This challenging regime has been well understood for linear models while barely studied for neural networks. Our theory lies in an extended Restricted Isometry Property (RIP)-based analysis framework for two-layer ReLU neural networks, which may be of independent interest to other LASSO or neural network settings. Based on the result, we advocate a neural network-based variable selection method. Experiments on simulated and real-world datasets show promising performance of the variable selection approach compared with existing techniques.