Goto

Collaborating Authors

 Wang, Fu


Geological and Well prior assisted full waveform inversion using conditional diffusion models

arXiv.org Artificial Intelligence

Full waveform inversion (FWI) often faces challenges due to inadequate seismic observations, resulting in band-limited and geologically inaccurate inversion results. Incorporating prior information from potential velocity distributions, well-log information, and our geological knowledge and expectations can significantly improve FWI convergence to a realistic model. While diffusion-regularized FWI has shown improved performance compared to conventional FWI by incorporating the velocity distribution prior, it can benefit even more by incorporating well-log information and other geological knowledge priors. To leverage this fact, we propose a geological class and well-information prior-assisted FWI using conditional diffusion models. This method seamlessly integrates multi-modal information into FWI, simultaneously achieving data fitting and universal geologic and geophysics prior matching, which is often not achieved with traditional regularization methods. Specifically, we propose to combine conditional diffusion models with FWI, where we integrate well-log data and geological class conditions into these conditional diffusion models using classifier-free guidance for multi-modal prior matching beyond the original velocity distribution prior. Numerical experiments on the Open-FWI datasets and field marine data demonstrate the effectiveness of our method compared to conventional FWI and the unconditional diffusion-regularized FWI.


Controllable seismic velocity synthesis using generative diffusion models

arXiv.org Artificial Intelligence

Accurate seismic velocity estimations are vital to understanding Earth's subsurface structures, assessing natural resources, and evaluating seismic hazards. Machine learning-based inversion algorithms have shown promising performance in regional (i.e., for exploration) and global velocity estimation, while their effectiveness hinges on access to large and diverse training datasets whose distributions generally cover the target solutions. Additionally, enhancing the precision and reliability of velocity estimation also requires incorporating prior information, e.g., geological classes, well logs, and subsurface structures, but current statistical or neural network-based methods are not flexible enough to handle such multi-modal information. To address both challenges, we propose to use conditional generative diffusion models for seismic velocity synthesis, in which we readily incorporate those priors. This approach enables the generation of seismic velocities that closely match the expected target distribution, offering datasets informed by both expert knowledge and measured data to support training for data-driven geophysical methods. We demonstrate the flexibility and effectiveness of our method through training diffusion models on the OpenFWI dataset under various conditions, including class labels, well logs, reflectivity images, as well as the combination of these priors. The performance of the approach under out-of-distribution conditions further underscores its generalization ability, showcasing its potential to provide tailored priors for velocity inverse problems and create specific training datasets for machine learning-based geophysical applications.


A prior regularized full waveform inversion using generative diffusion models

arXiv.org Artificial Intelligence

Full waveform inversion (FWI) has the potential to provide high-resolution subsurface model estimations. However, due to limitations in observation, e.g., regional noise, limited shots or receivers, and band-limited data, it is hard to obtain the desired high-resolution model with FWI. To address this challenge, we propose a new paradigm for FWI regularized by generative diffusion models. Specifically, we pre-train a diffusion model in a fully unsupervised manner on a prior velocity model distribution that represents our expectations of the subsurface and then adapt it to the seismic observations by incorporating the FWI into the sampling process of the generative diffusion models. What makes diffusion models uniquely appropriate for such an implementation is that the generative process retains the form and dimensions of the velocity model. Numerical examples demonstrate that our method can outperform the conventional FWI with only negligible additional computational cost. Even in cases of very sparse observations or observations with strong noise, the proposed method could still reconstruct a high-quality subsurface model. Thus, we can incorporate our prior expectations of the solutions in an efficient manner. We further test this approach on field data, which demonstrates the effectiveness of the proposed method.


Model-Agnostic Reachability Analysis on Deep Neural Networks

arXiv.org Artificial Intelligence

Verification plays an essential role in the formal analysis of safety-critical systems. Most current verification methods have specific requirements when working on Deep Neural Networks (DNNs). They either target one particular network category, e.g., Feedforward Neural Networks (FNNs), or networks with specific activation functions, e.g., RdLU. In this paper, we develop a model-agnostic verification framework, called DeepAgn, and show that it can be applied to FNNs, Recurrent Neural Networks (RNNs), or a mixture of both. Under the assumption of Lipschitz continuity, DeepAgn analyses the reachability of DNNs based on a novel optimisation scheme with a global convergence guarantee. It does not require access to the network's internal structures, such as layers and parameters. Through reachability analysis, DeepAgn can tackle several well-known robustness problems, including computing the maximum safe radius for a given input, and generating the ground-truth adversarial examples. We also empirically demonstrate DeepAgn's superior capability and efficiency in handling a broader class of deep neural networks, including both FNNs, and RNNs with very deep layers and millions of neurons, than other state-of-the-art verification approaches.


Towards Verifying the Geometric Robustness of Large-scale Neural Networks

arXiv.org Artificial Intelligence

Deep neural networks (DNNs) are known to be vulnerable to adversarial geometric transformation. This paper aims to verify the robustness of large-scale DNNs against the combination of multiple geometric transformations with a provable guarantee. Given a set of transformations (e.g., rotation, scaling, etc.), we develop GeoRobust, a black-box robustness analyser built upon a novel global optimisation strategy, for locating the worst-case combination of transformations that affect and even alter a network's output. GeoRobust can provide provable guarantees on finding the worst-case combination based on recent advances in Lipschitzian theory. Due to its black-box nature, GeoRobust can be deployed on large-scale DNNs regardless of their architectures, activation functions, and the number of neurons. In practice, GeoRobust can locate the worst-case geometric transformation with high precision for the ResNet50 model on ImageNet in a few seconds on average. We examined 18 ImageNet classifiers, including the ResNet family and vision transformers, and found a positive correlation between the geometric robustness of the networks and the parameter numbers. We also observe that increasing the depth of DNN is more beneficial than increasing its width in terms of improving its geometric robustness. Our tool GeoRobust is available at https://github.com/TrustAI/GeoRobust.


Dynamic Efficient Adversarial Training Guided by Gradient Magnitude

arXiv.org Artificial Intelligence

Adversarial training is an effective but time-consuming way to train robust deep neural networks that can withstand strong adversarial attacks. As a response to its inefficiency, we propose Dynamic Efficient Adversarial Training (DEAT), which gradually increases the adversarial iteration during training. We demonstrate that the gradient's magnitude correlates with the curvature of the trained model's loss landscape, allowing it to reflect the effect of adversarial training. Therefore, based on the magnitude of the gradient, we propose a general acceleration strategy, M+ acceleration, which enables an automatic and highly effective method of adjusting the training procedure. M+ acceleration is computationally efficient and easy to implement. It is suited for DEAT and compatible with the majority of existing adversarial training techniques. Extensive experiments have been done on CIFAR-10 and ImageNet datasets with various training environments. The results show that the proposed M+ acceleration significantly improves the training efficiency of existing adversarial training methods while achieving similar robustness performance. This demonstrates that the strategy is highly adaptive and offers a valuable solution for automatic adversarial training.