Goto

Collaborating Authors

 Wang, Dongxia


TruePose: Human-Parsing-guided Attention Diffusion for Full-ID Preserving Pose Transfer

arXiv.org Artificial Intelligence

Pose-Guided Person Image Synthesis (PGPIS) generates images that maintain a subject's identity from a source image while adopting a specified target pose (e.g., skeleton). While diffusion-based PGPIS methods effectively preserve facial features during pose transformation, they often struggle to accurately maintain clothing details from the source image throughout the diffusion process. This limitation becomes particularly problematic when there is a substantial difference between the source and target poses, significantly impacting PGPIS applications in the fashion industry where clothing style preservation is crucial for copyright protection. Our analysis reveals that this limitation primarily stems from the conditional diffusion model's attention modules failing to adequately capture and preserve clothing patterns. To address this limitation, we propose human-parsing-guided attention diffusion, a novel approach that effectively preserves both facial and clothing appearance while generating high-quality results. We propose a human-parsing-aware Siamese network that consists of three key components: dual identical UNets (TargetNet for diffusion denoising and SourceNet for source image embedding extraction), a human-parsing-guided fusion attention (HPFA), and a CLIP-guided attention alignment (CAA). The HPFA and CAA modules can embed the face and clothes patterns into the target image generation adaptively and effectively. Extensive experiments on both the in-shop clothes retrieval benchmark and the latest in-the-wild human editing dataset demonstrate our method's significant advantages over 13 baseline approaches for preserving both facial and clothes appearance in the source image.


Defending LVLMs Against Vision Attacks through Partial-Perception Supervision

arXiv.org Artificial Intelligence

Recent studies have raised significant concerns regarding the vulnerability of Large Vision Language Models (LVLMs) to maliciously injected or perturbed input images, which can mislead their responses. Existing defense methods show that such vision attacks are sensitive to image modifications especially cropping, using majority voting across responses of modified images as corrected responses. However, these modifications often result in partial images and distort the semantics, which reduces response quality on clean images after voting. Instead of directly using responses from partial images for voting, we investigate using them to supervise the LVLM's responses to the original images. We propose a black-box, training-free method called DPS (Defense through Partial-Perception Supervision). In this approach, the model is prompted using the responses generated by a model that perceives only a partial image. With DPS, the model can adjust its response based on partial image understanding when under attack, while confidently maintaining its original response for clean input. Our findings show that the weak model can supervise the strong model: when faced with an attacked input, the strong model becomes less confident and adjusts its response based on the weak model's partial understanding, effectively defending against the attack. With clean input, it confidently maintains its original response. Empirical experiments show our method outperforms the baseline, cutting the average attack success rate by 76.3% across six datasets on three popular models.


MRP-LLM: Multitask Reflective Large Language Models for Privacy-Preserving Next POI Recommendation

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown promising potential for next Point-of-Interest (POI) recommendation. However, existing methods only perform direct zero-shot prompting, leading to ineffective extraction of user preferences, insufficient injection of collaborative signals, and a lack of user privacy protection. As such, we propose a novel Multitask Reflective Large Language Model for Privacy-preserving Next POI Recommendation (MRP-LLM), aiming to exploit LLMs for better next POI recommendation while preserving user privacy. Specifically, the Multitask Reflective Preference Extraction Module first utilizes LLMs to distill each user's fine-grained (i.e., categorical, temporal, and spatial) preferences into a knowledge base (KB). The Neighbor Preference Retrieval Module retrieves and summarizes the preferences of similar users from the KB to obtain collaborative signals. Subsequently, aggregating the user's preferences with those of similar users, the Multitask Next POI Recommendation Module generates the next POI recommendations via multitask prompting. Meanwhile, during data collection, a Privacy Transmission Module is specifically devised to preserve sensitive POI data. Extensive experiments on three real-world datasets demonstrate the efficacy of our proposed MRP-LLM in providing more accurate next POI recommendations with user privacy preserved.


S-Eval: Automatic and Adaptive Test Generation for Benchmarking Safety Evaluation of Large Language Models

arXiv.org Artificial Intelligence

Large Language Models have gained considerable attention for their revolutionary capabilities. However, there is also growing concern on their safety implications, making a comprehensive safety evaluation for LLMs urgently needed before model deployment. In this work, we propose S-Eval, a new comprehensive, multi-dimensional and open-ended safety evaluation benchmark. At the core of S-Eval is a novel LLM-based automatic test prompt generation and selection framework, which trains an expert testing LLM Mt combined with a range of test selection strategies to automatically construct a high-quality test suite for the safety evaluation. The key to the automation of this process is a novel expert safety-critique LLM Mc able to quantify the riskiness score of an LLM's response, and additionally produce risk tags and explanations. Besides, the generation process is also guided by a carefully designed risk taxonomy with four different levels, covering comprehensive and multi-dimensional safety risks of concern. Based on these, we systematically construct a new and large-scale safety evaluation benchmark for LLMs consisting of 220,000 evaluation prompts, including 20,000 base risk prompts (10,000 in Chinese and 10,000 in English) and 200,000 corresponding attack prompts derived from 10 popular adversarial instruction attacks against LLMs. Moreover, considering the rapid evolution of LLMs and accompanied safety threats, S-Eval can be flexibly configured and adapted to include new risks, attacks and models. S-Eval is extensively evaluated on 20 popular and representative LLMs. The results confirm that S-Eval can better reflect and inform the safety risks of LLMs compared to existing benchmarks. We also explore the impacts of parameter scales, language environments, and decoding parameters on the evaluation, providing a systematic methodology for evaluating the safety of LLMs.


Does Knowledge Graph Really Matter for Recommender Systems?

arXiv.org Artificial Intelligence

Recommender systems (RSs) are designed to provide personalized recommendations to users. Recently, knowledge graphs (KGs) have been widely introduced in RSs to improve recommendation accuracy. In this study, however, we demonstrate that RSs do not necessarily perform worse even if the KG is downgraded to the user-item interaction graph only (or removed). We propose an evaluation framework KG4RecEval to systematically evaluate how much a KG contributes to the recommendation accuracy of a KG-based RS, using our defined metric KGER (KG utilization efficiency in recommendation). We consider the scenarios where knowledge in a KG gets completely removed, randomly distorted and decreased, and also where recommendations are for cold-start users. Our extensive experiments on four commonly used datasets and a number of state-of-the-art KG-based RSs reveal that: to remove, randomly distort or decrease knowledge does not necessarily decrease recommendation accuracy, even for cold-start users. These findings inspire us to rethink how to better utilize knowledge from existing KGs, whereby we discuss and provide insights into what characteristics of datasets and KG-based RSs may help improve KG utilization efficiency.


FairRec: Fairness Testing for Deep Recommender Systems

arXiv.org Artificial Intelligence

Deep learning-based recommender systems (DRSs) are increasingly and widely deployed in the industry, which brings significant convenience to people's daily life in different ways. However, recommender systems are also shown to suffer from multiple issues,e.g., the echo chamber and the Matthew effect, of which the notation of "fairness" plays a core role.While many fairness notations and corresponding fairness testing approaches have been developed for traditional deep classification models, they are essentially hardly applicable to DRSs. One major difficulty is that there still lacks a systematic understanding and mapping between the existing fairness notations and the diverse testing requirements for deep recommender systems, not to mention further testing or debugging activities. To address the gap, we propose FairRec, a unified framework that supports fairness testing of DRSs from multiple customized perspectives, e.g., model utility, item diversity, item popularity, etc. We also propose a novel, efficient search-based testing approach to tackle the new challenge, i.e., double-ended discrete particle swarm optimization (DPSO) algorithm, to effectively search for hidden fairness issues in the form of certain disadvantaged groups from a vast number of candidate groups. Given the testing report, by adopting a simple re-ranking mitigation strategy on these identified disadvantaged groups, we show that the fairness of DRSs can be significantly improved. We conducted extensive experiments on multiple industry-level DRSs adopted by leading companies. The results confirm that FairRec is effective and efficient in identifying the deeply hidden fairness issues, e.g., achieving 95% testing accuracy with half to 1/8 time.


Is It Harmful When Advisors Only Pretend to Be Honest?

AAAI Conferences

In trust systems, unfair rating attacks — where advisors provide ratings dishonestly — influence the accuracy of trust evaluation. A secure trust system should function properly under all possible unfair rating attacks; including dynamic attacks. In the literature, camouflage attacks are the most studied dynamic attacks. But an open question is whether more harmful dynamic attacks exist. We propose random processes to model and measure dynamic attacks. The harm of an attack is influenced by a user's ability to learn from the past. We consider three types of users: blind users, aware users, and general users. We found for all the three types, camouflage attacks are far from the most harmful. We identified the most harmful attacks, under which we found the ratings may still be useful to users.


Quantifying Robustness of Trust Systems against Collusive Unfair Rating Attacks Using Information Theory

AAAI Conferences

Unfair rating attacks happen in existing trust and reputation systems, lowering the quality of the systems. There exists a formal model that measures the maximum impact of independent attackers [Wang et al., 2015] — based on information theory. We improve on these results in multiple ways: (1) we alter the methodology to be able to reason about colluding attackers as well, and (2) we extend the method to be able to measure the strength of any attacks (rather than just the strongest attack). Using (1), we identify the strongest collusion attacks, helping construct robust trust system. Using (2), we identify the strength of (classes of) attacks that we found in the literature. Based on this, we help to overcome a shortcoming of current research into collusion-resistance — specific (types of) attacks are used in simulations, disallowing direct comparisons between analyses of systems.