Wang, Dongjie
Hierarchical Graph Neural Networks for Causal Discovery and Root Cause Localization
Wang, Dongjie, Chen, Zhengzhang, Ni, Jingchao, Tong, Liang, Wang, Zheng, Fu, Yanjie, Chen, Haifeng
In this paper, we propose REASON, a novel framework that enables the automatic discovery of both intra-level (i.e., within-network) and inter-level (i.e., across-network) causal relationships for root cause localization. REASON consists of Topological Causal Discovery and Individual Causal Discovery. The Topological Causal Discovery component aims to model the fault propagation in order to trace back to the root causes. To achieve this, we propose novel hierarchical graph neural networks to construct interdependent causal networks by modeling both intra-level and inter-level non-linear causal relations. Based on the learned interdependent causal networks, we then leverage random walks with restarts to model the network propagation of a system fault. The Individual Causal Discovery component focuses on capturing abrupt change patterns of a single system entity. This component examines the temporal patterns of each entity's metric data (i.e., time series), and estimates its likelihood of being a root cause based on the Extreme Value theory. Combining the topological and individual causal scores, the top K system entities are identified as root causes. Extensive experiments on three real-world datasets with case studies demonstrate the effectiveness and superiority of the proposed framework.
Traceable Automatic Feature Transformation via Cascading Actor-Critic Agents
Xiao, Meng, Wang, Dongjie, Wu, Min, Qiao, Ziyue, Wang, Pengfei, Liu, Kunpeng, Zhou, Yuanchun, Fu, Yanjie
Feature transformation for AI is an essential task to boost the effectiveness and interpretability of machine learning (ML). Feature transformation aims to transform original data to identify an optimal feature space that enhances the performances of a downstream ML model. Existing studies either combines preprocessing, feature selection, and generation skills to empirically transform data, or automate feature transformation by machine intelligence, such as reinforcement learning. However, existing studies suffer from: 1) high-dimensional non-discriminative feature space; 2) inability to represent complex situational states; 3) inefficiency in integrating local and global feature information. To fill the research gap, we formulate the feature transformation task as an iterative, nested process of feature generation and selection, where feature generation is to generate and add new features based on original features, and feature selection is to remove redundant features to control the size of feature space. Finally, we present extensive experiments and case studies to illustrate 24.7\% improvements in F1 scores compared with SOTAs and robustness in high-dimensional data.
Boosting Urban Traffic Speed Prediction via Integrating Implicit Spatial Correlations
Wang, Dongkun, Fan, Wei, Wang, Pengyang, Wang, Pengfei, Wang, Dongjie, Zhang, Denghui, Fu, Yanjie
Urban traffic speed prediction aims to estimate the future traffic speed for improving the urban transportation services. Enormous efforts have been made on exploiting spatial correlations and temporal dependencies of traffic speed evolving patterns by leveraging explicit spatial relations (geographical proximity) through pre-defined geographical structures ({\it e.g.}, region grids or road networks). While achieving promising results, current traffic speed prediction methods still suffer from ignoring implicit spatial correlations (interactions), which cannot be captured by grid/graph convolutions. To tackle the challenge, we propose a generic model for enabling the current traffic speed prediction methods to preserve implicit spatial correlations. Specifically, we first develop a Dual-Transformer architecture, including a Spatial Transformer and a Temporal Transformer. The Spatial Transformer automatically learns the implicit spatial correlations across the road segments beyond the boundary of geographical structures, while the Temporal Transformer aims to capture the dynamic changing patterns of the implicit spatial correlations. Then, to further integrate both explicit and implicit spatial correlations, we propose a distillation-style learning framework, in which the existing traffic speed prediction methods are considered as the teacher model, and the proposed Dual-Transformer architectures are considered as the student model. The extensive experiments over three real-world datasets indicate significant improvements of our proposed framework over the existing methods.
Self-Optimizing Feature Transformation
Xiao, Meng, Wang, Dongjie, Wu, Min, Liu, Kunpeng, Xiong, Hui, Zhou, Yuanchun, Fu, Yanjie
Feature transformation aims to extract a good representation (feature) space by mathematically transforming existing features. It is crucial to address the curse of dimensionality, enhance model generalization, overcome data sparsity, and expand the availability of classic models. Current research focuses on domain knowledge-based feature engineering or learning latent representations; nevertheless, these methods are not entirely automated and cannot produce a traceable and optimal representation space. When rebuilding a feature space for a machine learning task, can these limitations be addressed concurrently? In this extension study, we present a self-optimizing framework for feature transformation. To achieve a better performance, we improved the preliminary work by (1) obtaining an advanced state representation for enabling reinforced agents to comprehend the current feature set better; and (2) resolving Q-value overestimation in reinforced agents for learning unbiased and effective policies. Finally, to make experiments more convincing than the preliminary work, we conclude by adding the outlier detection task with five datasets, evaluating various state representation approaches, and comparing different training strategies. Extensive experiments and case studies show that our work is more effective and superior.
Human-instructed Deep Hierarchical Generative Learning for Automated Urban Planning
Wang, Dongjie, Wu, Lingfei, Zhang, Denghui, Zhou, Jingbo, Sun, Leilei, Fu, Yanjie
The essential task of urban planning is to generate the optimal land-use configuration of a target area. However, traditional urban planning is time-consuming and labor-intensive. Deep generative learning gives us hope that we can automate this planning process and come up with the ideal urban plans. While remarkable achievements have been obtained, they have exhibited limitations in lacking awareness of: 1) the hierarchical dependencies between functional zones and spatial grids; 2) the peer dependencies among functional zones; and 3) human regulations to ensure the usability of generated configurations. To address these limitations, we develop a novel human-instructed deep hierarchical generative model. We rethink the urban planning generative task from a unique functionality perspective, where we summarize planning requirements into different functionality projections for better urban plan generation. To this end, we develop a three-stage generation process from a target area to zones to grids. The first stage is to label the grids of a target area with latent functionalities to discover functional zones. The second stage is to perceive the planning requirements to form urban functionality projections. We propose a novel module: functionalizer to project the embedding of human instructions and geospatial contexts to the zone-level plan to obtain such projections. Each projection includes the information of land-use portfolios and the structural dependencies across spatial grids in terms of a specific urban function. The third stage is to leverage multi-attentions to model the zone-zone peer dependencies of the functionality projections to generate grid-level land-use configurations. Finally, we present extensive experiments to demonstrate the effectiveness of our framework.
Online POI Recommendation: Learning Dynamic Geo-Human Interactions in Streams
Wang, Dongjie, Liu, Kunpeng, Xiong, Hui, Fu, Yanjie
In this paper, we focus on the problem of modeling dynamic geo-human interactions in streams for online POI recommendations. Specifically, we formulate the in-stream geo-human interaction modeling problem into a novel deep interactive reinforcement learning framework, where an agent is a recommender and an action is a next POI to visit. We uniquely model the reinforcement learning environment as a joint and connected composition of users and geospatial contexts (POIs, POI categories, functional zones). An event that a user visits a POI in stream updates the states of both users and geospatial contexts; the agent perceives the updated environment state to make online recommendations. Specifically, we model a mixed-user event stream by unifying all users, visits, and geospatial contexts as a dynamic knowledge graph stream, in order to model human-human, geo-human, geo-geo interactions. We design an exit mechanism to address the expired information challenge, devise a meta-path method to address the recommendation candidate generation challenge, and develop a new deep policy network structure to address the varying action space challenge, and, finally, propose an effective adversarial training method for optimization. Finally, we present extensive experiments to demonstrate the enhanced performance of our method.
Automated Urban Planning for Reimagining City Configuration via Adversarial Learning: Quantification, Generation, and Evaluation
Wang, Dongjie, Fu, Yanjie, Liu, Kunpeng, Chen, Fanglan, Wang, Pengyang, Lu, Chang-Tien
Urban planning refers to the efforts of designing land-use configurations given a region. However, to obtain effective urban plans, urban experts have to spend much time and effort analyzing sophisticated planning constraints based on domain knowledge and personal experiences. To alleviate the heavy burden of them and produce consistent urban plans, we want to ask that can AI accelerate the urban planning process, so that human planners only adjust generated configurations for specific needs? The recent advance of deep generative models provides a possible answer, which inspires us to automate urban planning from an adversarial learning perspective. However, three major challenges arise: 1) how to define a quantitative land-use configuration? 2) how to automate configuration planning? 3) how to evaluate the quality of a generated configuration? In this paper, we systematically address the three challenges. Specifically, 1) We define a land-use configuration as a longitude-latitude-channel tensor. 2) We formulate the automated urban planning problem into a task of deep generative learning. The objective is to generate a configuration tensor given the surrounding contexts of a target region. 3) We provide quantitative evaluation metrics and conduct extensive experiments to demonstrate the effectiveness of our framework.
Reinforced Imitative Graph Representation Learning for Mobile User Profiling: An Adversarial Training Perspective
Wang, Dongjie, Wang, Pengyang, Liu, Kunpeng, Zhou, Yuanchun, Hughes, Charles, Fu, Yanjie
In this paper, we study the problem of mobile user profiling, which is a critical component for quantifying users' characteristics in the human mobility modeling pipeline. Human mobility is a sequential decision-making process dependent on the users' dynamic interests. With accurate user profiles, the predictive model can perfectly reproduce users' mobility trajectories. In the reverse direction, once the predictive model can imitate users' mobility patterns, the learned user profiles are also optimal. Such intuition motivates us to propose an imitation-based mobile user profiling framework by exploiting reinforcement learning, in which the agent is trained to precisely imitate users' mobility patterns for optimal user profiles. Specifically, the proposed framework includes two modules: (1) representation module, which produces state combining user profiles and spatio-temporal context in real-time; (2) imitation module, where Deep Q-network (DQN) imitates the user behavior (action) based on the state that is produced by the representation module. However, there are two challenges in running the framework effectively. First, epsilon-greedy strategy in DQN makes use of the exploration-exploitation trade-off by randomly pick actions with the epsilon probability. Such randomness feeds back to the representation module, causing the learned user profiles unstable. To solve the problem, we propose an adversarial training strategy to guarantee the robustness of the representation module. Second, the representation module updates users' profiles in an incremental manner, requiring integrating the temporal effects of user profiles. Inspired by Long-short Term Memory (LSTM), we introduce a gated mechanism to incorporate new and old user characteristics into the user profile.
Reimagining City Configuration: Automated Urban Planning via Adversarial Learning
Wang, Dongjie, Fu, Yanjie, Wang, Pengyang, Huang, Bo, Lu, Chang-Tien
Urban planning refers to the efforts of designing land-use configurations. Effective urban planning can help to mitigate the operational and social vulnerability of a urban system, such as high tax, crimes, traffic congestion and accidents, pollution, depression, and anxiety. Due to the high complexity of urban systems, such tasks are mostly completed by professional planners. But, human planners take longer time. The recent advance of deep learning motivates us to ask: can machines learn at a human capability to automatically and quickly calculate land-use configuration, so human planners can finally adjust machine-generated plans for specific needs? To this end, we formulate the automated urban planning problem into a task of learning to configure land-uses, given the surrounding spatial contexts. To set up the task, we define a land-use configuration as a longitude-latitude-channel tensor, where each channel is a category of POIs and the value of an entry is the number of POIs. The objective is then to propose an adversarial learning framework that can automatically generate such tensor for an unplanned area. In particular, we first characterize the contexts of surrounding areas of an unplanned area by learning representations from spatial graphs using geographic and human mobility data. Second, we combine each unplanned area and its surrounding context representation as a tuple, and categorize all the tuples into positive (well-planned areas) and negative samples (poorly-planned areas). Third, we develop an adversarial land-use configuration approach, where the surrounding context representation is fed into a generator to generate a land-use configuration, and a discriminator learns to distinguish among positive and negative samples.