Wang, Dong
Federated Recommendation via Hybrid Retrieval Augmented Generation
Zeng, Huimin, Yue, Zhenrui, Jiang, Qian, Wang, Dong
Federated Recommendation (FR) emerges as a novel paradigm that enables privacy-preserving recommendations. However, traditional FR systems usually represent users/items with discrete identities (IDs), suffering from performance degradation due to the data sparsity and heterogeneity in FR. On the other hand, Large Language Models (LLMs) as recommenders have proven effective across various recommendation scenarios. Yet, LLM-based recommenders encounter challenges such as low inference efficiency and potential hallucination, compromising their performance in real-world scenarios. To this end, we propose GPT-FedRec, a federated recommendation framework leveraging ChatGPT and a novel hybrid Retrieval Augmented Generation (RAG) mechanism. GPT-FedRec is a two-stage solution. The first stage is a hybrid retrieval process, mining ID-based user patterns and text-based item features. Next, the retrieved results are converted into text prompts and fed into GPT for re-ranking. Our proposed hybrid retrieval mechanism and LLM-based re-rank aims to extract generalized features from data and exploit pretrained knowledge within LLM, overcoming data sparsity and heterogeneity in FR. In addition, the RAG approach also prevents LLM hallucination, improving the recommendation performance for real-world users. Experimental results on diverse benchmark datasets demonstrate the superior performance of GPT-FedRec against state-of-the-art baseline methods.
Adversarial Data Augmentation for Robust Speaker Verification
Zhou, Zhenyu, Chen, Junhui, Wang, Namin, Li, Lantian, Wang, Dong
Data augmentation (DA) has gained widespread popularity in deep speaker models due to its ease of implementation and significant effectiveness. It enriches training data by simulating real-life acoustic variations, enabling deep neural networks to learn speaker-related representations while disregarding irrelevant acoustic variations, thereby improving robustness and generalization. However, a potential issue with the vanilla DA is augmentation residual, i.e., unwanted distortion caused by different types of augmentation. To address this problem, this paper proposes a novel approach called adversarial data augmentation (A-DA) which combines DA with adversarial learning. Specifically, it involves an additional augmentation classifier to categorize various augmentation types used in data augmentation. This adversarial learning empowers the network to generate speaker embeddings that can deceive the augmentation classifier, making the learned speaker embeddings more robust in the face of augmentation variations. Experiments conducted on VoxCeleb and CN-Celeb datasets demonstrate that our proposed A-DA outperforms standard DA in both augmentation matched and mismatched test conditions, showcasing its superior robustness and generalization against acoustic variations.
Off-Policy Primal-Dual Safe Reinforcement Learning
Wu, Zifan, Tang, Bo, Lin, Qian, Yu, Chao, Mao, Shangqin, Xie, Qianlong, Wang, Xingxing, Wang, Dong
Primal-dual safe RL methods commonly perform iterations between the primal update of the policy and the dual update of the Lagrange Multiplier. Such a training paradigm is highly susceptible to the error in cumulative cost estimation since this estimation serves as the key bond connecting the primal and dual update processes. We show that this problem causes significant underestimation of cost when using off-policy methods, leading to the failure to satisfy the safety constraint. To address this issue, we propose \textit{conservative policy optimization}, which learns a policy in a constraint-satisfying area by considering the uncertainty in cost estimation. This improves constraint satisfaction but also potentially hinders reward maximization. We then introduce \textit{local policy convexification} to help eliminate such suboptimality by gradually reducing the estimation uncertainty. We provide theoretical interpretations of the joint coupling effect of these two ingredients and further verify them by extensive experiments. Results on benchmark tasks show that our method not only achieves an asymptotic performance comparable to state-of-the-art on-policy methods while using much fewer samples, but also significantly reduces constraint violation during training. Our code is available at https://github.com/ZifanWu/CAL.
Deployable Reinforcement Learning with Variable Control Rate
Wang, Dong, Beltrame, Giovanni
Deploying controllers trained with Reinforcement Learning (RL) on real robots can be challenging: RL relies on agents' policies being modeled as Markov Decision Processes (MDPs), which assume an inherently discrete passage of time. The use of MDPs results in that nearly all RL-based control systems employ a fixed-rate control strategy with a period (or time step) typically chosen based on the developer's experience or specific characteristics of the application environment. Unfortunately, the system should be controlled at the highest, worst-case frequency to ensure stability, which can demand significant computational and energy resources and hinder the deployability of the controller on onboard hardware. Adhering to the principles of reactive programming, we surmise that applying control actions only when necessary enables the use of simpler hardware and helps reduce energy consumption. We challenge the fixed frequency assumption by proposing a variant of RL with variable control rate. In this approach, the policy decides the action the agent should take as well as the duration of the time step associated with that action. In our new setting, we expand Soft Actor-Critic (SAC) to compute the optimal policy with a variable control rate, introducing the Soft Elastic Actor-Critic (SEAC) algorithm. We show the efficacy of SEAC through a proof-of-concept simulation driving an agent with Newtonian kinematics. Our experiments show higher average returns, shorter task completion times, and reduced computational resources when compared to fixed rate policies.
HiBid: A Cross-Channel Constrained Bidding System with Budget Allocation by Hierarchical Offline Deep Reinforcement Learning
Wang, Hao, Tang, Bo, Liu, Chi Harold, Mao, Shangqin, Zhou, Jiahong, Dai, Zipeng, Sun, Yaqi, Xie, Qianlong, Wang, Xingxing, Wang, Dong
Online display advertising platforms service numerous advertisers by providing real-time bidding (RTB) for the scale of billions of ad requests every day. The bidding strategy handles ad requests cross multiple channels to maximize the number of clicks under the set financial constraints, i.e., total budget and cost-per-click (CPC), etc. Different from existing works mainly focusing on single channel bidding, we explicitly consider cross-channel constrained bidding with budget allocation. Specifically, we propose a hierarchical offline deep reinforcement learning (DRL) framework called ``HiBid'', consisted of a high-level planner equipped with auxiliary loss for non-competitive budget allocation, and a data augmentation enhanced low-level executor for adaptive bidding strategy in response to allocated budgets. Additionally, a CPC-guided action selection mechanism is introduced to satisfy the cross-channel CPC constraint. Through extensive experiments on both the large-scale log data and online A/B testing, we confirm that HiBid outperforms six baselines in terms of the number of clicks, CPC satisfactory ratio, and return-on-investment (ROI). We also deploy HiBid on Meituan advertising platform to already service tens of thousands of advertisers every day.
RL-MPCA: A Reinforcement Learning Based Multi-Phase Computation Allocation Approach for Recommender Systems
Zhou, Jiahong, Mao, Shunhui, Yang, Guoliang, Tang, Bo, Xie, Qianlong, Lin, Lebin, Wang, Xingxing, Wang, Dong
Recommender systems aim to recommend the most suitable items to users from a large number of candidates. Their computation cost grows as the number of user requests and the complexity of services (or models) increases. Under the limitation of computation resources (CRs), how to make a trade-off between computation cost and business revenue becomes an essential question. The existing studies focus on dynamically allocating CRs in queue truncation scenarios (i.e., allocating the size of candidates), and formulate the CR allocation problem as an optimization problem with constraints. Some of them focus on single-phase CR allocation, and others focus on multi-phase CR allocation but introduce some assumptions about queue truncation scenarios. However, these assumptions do not hold in other scenarios, such as retrieval channel selection and prediction model selection. Moreover, existing studies ignore the state transition process of requests between different phases, limiting the effectiveness of their approaches. This paper proposes a Reinforcement Learning (RL) based Multi-Phase Computation Allocation approach (RL-MPCA), which aims to maximize the total business revenue under the limitation of CRs. RL-MPCA formulates the CR allocation problem as a Weakly Coupled MDP problem and solves it with an RL-based approach. Specifically, RL-MPCA designs a novel deep Q-network to adapt to various CR allocation scenarios, and calibrates the Q-value by introducing multiple adaptive Lagrange multipliers (adaptive-$\lambda$) to avoid violating the global CR constraints. Finally, experiments on the offline simulation environment and online real-world recommender system validate the effectiveness of our approach.
Point-PEFT: Parameter-Efficient Fine-Tuning for 3D Pre-trained Models
Tang, Yiwen, Zhang, Ray, Guo, Zoey, Ma, Xianzheng, Wang, Dong, Wang, Zhigang, Zhao, Bin, Li, Xuelong
The popularity of pre-trained large models has revolutionized downstream tasks across diverse fields, such as language, vision, and multi-modality. To minimize the adaption cost for downstream tasks, many Parameter-Efficient Fine-Tuning (PEFT) techniques are proposed for language and 2D image pre-trained models. However, the specialized PEFT method for 3D pre-trained models is still under-explored. To this end, we introduce Point-PEFT, a novel framework for adapting point cloud pre-trained models with minimal learnable parameters. Specifically, for a pre-trained 3D model, we freeze most of its parameters, and only tune the newly added PEFT modules on downstream tasks, which consist of a Point-prior Prompt and a Geometry-aware Adapter. The Point-prior Prompt adopts a set of learnable prompt tokens, for which we propose to construct a memory bank with domain-specific knowledge, and utilize a parameter-free attention to enhance the prompt tokens. The Geometry-aware Adapter aims to aggregate point cloud features within spatial neighborhoods to capture fine-grained geometric information through local interactions. Extensive experiments indicate that our Point-PEFT can achieve better performance than the full fine-tuning on various downstream tasks, while using only 5% of the trainable parameters, demonstrating the efficiency and effectiveness of our approach. Code is released at https://github.com/Ivan-Tang-3D/PEFT-3D.
Calibration-free quantitative phase imaging in multi-core fiber endoscopes using end-to-end deep learning
Sun, Jiawei, Zhao, Bin, Wang, Dong, Wang, Zhigang, Zhang, Jie, Koukourakis, Nektarios, Czarske, Juergen W., Li, Xuelong
Fiber endoscopes have emerged as a vital tool for highresolution Recent advancements have adopted deep learning techniques microscopic imaging in hard-to-reach areas. In contrast to expedite the QPI image reconstruction process [12, 13]. Moreover, to conventional endoscopes with a typical diameter of extant literature indicates the potential of decrypting an several millimeters, fiber endoscopes, which could be submillimeter encoded phase directly from speckle images utilizing deep learning, thin and flexible [1-5], can pass through the organ's although only in simulated environments [14]. This demonstrates intricate pathways without causing harm inside the body [6], the theoretical possibility of reconstructing the original making them particularly suitable for procedures requiring utmost phase directly from speckle images using deep learning for MCF precision and minimal invasiveness. The reduced size and phase imaging, however, networks trained on simulated data adaptability of fiber endoscopes ensure less discomfort for the can hardly achieve accurate phase reconstructions in real-world patient, leading to quicker recovery times and a lower risk of optical systems.
Noise Distribution Decomposition based Multi-Agent Distributional Reinforcement Learning
Geng, Wei, Xiao, Baidi, Li, Rongpeng, Wei, Ning, Wang, Dong, Zhao, Zhifeng
Generally, Reinforcement Learning (RL) agent updates its policy by repetitively interacting with the environment, contingent on the received rewards to observed states and undertaken actions. However, the environmental disturbance, commonly leading to noisy observations (e.g., rewards and states), could significantly shape the performance of agent. Furthermore, the learning performance of Multi-Agent Reinforcement Learning (MARL) is more susceptible to noise due to the interference among intelligent agents. Therefore, it becomes imperative to revolutionize the design of MARL, so as to capably ameliorate the annoying impact of noisy rewards. In this paper, we propose a novel decomposition-based multi-agent distributional RL method by approximating the globally shared noisy reward by a Gaussian mixture model (GMM) and decomposing it into the combination of individual distributional local rewards, with which each agent can be updated locally through distributional RL. Moreover, a diffusion model (DM) is leveraged for reward generation in order to mitigate the issue of costly interaction expenditure for learning distributions. Furthermore, the optimality of the distribution decomposition is theoretically validated, while the design of loss function is carefully calibrated to avoid the decomposition ambiguity. We also verify the effectiveness of the proposed method through extensive simulation experiments with noisy rewards. Besides, different risk-sensitive policies are evaluated in order to demonstrate the superiority of distributional RL in different MARL tasks.
ViewRefer: Grasp the Multi-view Knowledge for 3D Visual Grounding with GPT and Prototype Guidance
Guo, Zoey, Tang, Yiwen, Zhang, Ray, Wang, Dong, Wang, Zhigang, Zhao, Bin, Li, Xuelong
Understanding 3D scenes from multi-view inputs has been proven to alleviate the view discrepancy issue in 3D visual grounding. However, existing methods normally neglect the view cues embedded in the text modality and fail to weigh the relative importance of different views. In this paper, we propose ViewRefer, a multi-view framework for 3D visual grounding exploring how to grasp the view knowledge from both text and 3D modalities. For the text branch, ViewRefer leverages the diverse linguistic knowledge of large-scale language models, e.g., GPT, to expand a single grounding text to multiple geometry-consistent descriptions. Meanwhile, in the 3D modality, a transformer fusion module with inter-view attention is introduced to boost the interaction of objects across views. On top of that, we further present a set of learnable multi-view prototypes, which memorize scene-agnostic knowledge for different views, and enhance the framework from two perspectives: a view-guided attention module for more robust text features, and a view-guided scoring strategy during the final prediction. With our designed paradigm, ViewRefer achieves superior performance on three benchmarks and surpasses the second-best by +2.8%, +1.5%, and +1.35% on Sr3D, Nr3D, and ScanRefer. Code is released at https://github.com/Ivan-Tang-3D/ViewRefer3D.