Wang, Di
What makes your model a low-empathy or warmth person: Exploring the Origins of Personality in LLMs
Yang, Shu, Zhu, Shenzhe, Bao, Ruoxuan, Liu, Liang, Cheng, Yu, Hu, Lijie, Li, Mengdi, Wang, Di
Large language models (LLMs) have demonstrated remarkable capabilities in generating human-like text and exhibiting personality traits similar to those in humans. However, the mechanisms by which LLMs encode and express traits such as agreeableness and impulsiveness remain poorly understood. Drawing on the theory of social determinism, we investigate how long-term background factors, such as family environment and cultural norms, interact with short-term pressures like external instructions, shaping and influencing LLMs' personality traits. By steering the output of LLMs through the utilization of interpretable features within the model, we explore how these background and pressure factors lead to changes in the model's traits without the need for further fine-tuning. Additionally, we suggest the potential impact of these factors on model safety from the perspective of personality.
Understanding Reasoning in Chain-of-Thought from the Hopfieldian View
Hu, Lijie, Liu, Liang, Yang, Shu, Chen, Xin, Tan, Zhen, Ali, Muhammad Asif, Li, Mengdi, Wang, Di
Large Language Models have demonstrated remarkable abilities across various tasks, with Chain-of-Thought (CoT) prompting emerging as a key technique to enhance reasoning capabilities. However, existing research primarily focuses on improving performance, lacking a comprehensive framework to explain and understand the fundamental factors behind CoT's success. To bridge this gap, we introduce a novel perspective grounded in the Hopfieldian view of cognition in cognitive neuroscience. We establish a connection between CoT reasoning and key cognitive elements such as stimuli, actions, neural populations, and representation spaces. From our view, we can understand the reasoning process as the movement between these representation spaces. Building on this insight, we develop a method for localizing reasoning errors in the response of CoTs. Moreover, we propose the Representation-of-Thought (RoT) framework, which leverages the robustness of low-dimensional representation spaces to enhance the robustness of the reasoning process in CoTs. Experimental results demonstrate that RoT improves the robustness and interpretability of CoT reasoning while offering fine-grained control over the reasoning process.
Component-based Sketching for Deep ReLU Nets
Wang, Di, Lin, Shao-Bo, Meng, Deyu, Cao, Feilong
Deep learning has made profound impacts in the domains of data mining and AI, distinguished by the groundbreaking achievements in numerous real-world applications and the innovative algorithm design philosophy. However, it suffers from the inconsistency issue between optimization and generalization, as achieving good generalization, guided by the bias-variance trade-off principle, favors under-parameterized networks, whereas ensuring effective convergence of gradient-based algorithms demands over-parameterized networks. To address this issue, we develop a novel sketching scheme based on deep net components for various tasks. Specifically, we use deep net components with specific efficacy to build a sketching basis that embodies the advantages of deep networks. Subsequently, we transform deep net training into a linear empirical risk minimization problem based on the constructed basis, successfully avoiding the complicated convergence analysis of iterative algorithms. The efficacy of the proposed component-based sketching is validated through both theoretical analysis and numerical experiments. Theoretically, we show that the proposed component-based sketching provides almost optimal rates in approximating saturated functions for shallow nets and also achieves almost optimal generalization error bounds. Numerically, we demonstrate that, compared with the existing gradient-based training methods, component-based sketching possesses superior generalization performance with reduced training costs.
XTraffic: A Dataset Where Traffic Meets Incidents with Explainability and More
Gou, Xiaochuan, Li, Ziyue, Lan, Tian, Lin, Junpeng, Li, Zhishuai, Zhao, Bingyu, Zhang, Chen, Wang, Di, Zhang, Xiangliang
Long-separated research has been conducted on two highly correlated tracks: traffic and incidents. Traffic track witnesses complicating deep learning models, e.g., to push the prediction a few percent more accurate, and the incident track only studies the incidents alone, e.g., to infer the incident risk. We, for the first time, spatiotemporally aligned the two tracks in a large-scale region (16,972 traffic nodes) over the whole year of 2023: our XTraffic dataset includes traffic, i.e., time-series indexes on traffic flow, lane occupancy, and average vehicle speed, and incidents, whose records are spatiotemporally-aligned with traffic data, with seven different incident classes. Additionally, each node includes detailed physical and policy-level meta-attributes of lanes. Our data can revolutionalize traditional traffic-related tasks towards higher interpretability and practice: instead of traditional prediction or classification tasks, we conduct: (1) post-incident traffic forecasting to quantify the impact of different incidents on traffic indexes; (2) incident classification using traffic indexes to determine the incidents types for precautions measures; (3) global causal analysis among the traffic indexes, meta-attributes, and incidents to give high-level guidance of the interrelations of various factors; (4) local causal analysis within road nodes to examine how different incidents affect the road segments' relations. The dataset is available at http://xaitraffic.github.io.
Beyond Statistical Estimation: Differentially Private Individual Computation via Shuffling
Wang, Shaowei, Dong, Changyu, Song, Xiangfu, Li, Jin, Zhou, Zhili, Wang, Di, Wu, Han
In data-driven applications, preserving user privacy while enabling valuable computations remains a critical challenge. Technologies like Differential Privacy (DP) have been pivotal in addressing these concerns. The shuffle model of DP requires no trusted curators and can achieve high utility by leveraging the privacy amplification effect yielded from shuffling. These benefits have led to significant interest in the shuffle model. However, the computation tasks in the shuffle model are limited to statistical estimation, making the shuffle model inapplicable to real-world scenarios in which each user requires a personalized output. This paper introduces a novel paradigm termed Private Individual Computation (PIC), expanding the shuffle model to support a broader range of permutation-equivariant computations. PIC enables personalized outputs while preserving privacy, and enjoys privacy amplification through shuffling. We propose a concrete protocol that realizes PIC. By using one-time public keys, our protocol enables users to receive their outputs without compromising anonymity, which is essential for privacy amplification. Additionally, we present an optimal randomizer, the Minkowski Response, designed for the PIC model to enhance utility. We formally prove the security and privacy properties of the PIC protocol. Theoretical analysis and empirical evaluations demonstrate PIC's capability in handling non-statistical computation tasks, and the efficacy of PIC and the Minkowski randomizer in achieving superior utility compared to existing solutions.
Deep Reinforcement Learning for Sequential Combinatorial Auctions
Ravindranath, Sai Srivatsa, Feng, Zhe, Wang, Di, Zaheer, Manzil, Mehta, Aranyak, Parkes, David C.
Revenue-optimal auction design is a challenging problem with significant theoretical and practical implications. Sequential auction mechanisms, known for their simplicity and strong strategyproofness guarantees, are often limited by theoretical results that are largely existential, except for certain restrictive settings. Although traditional reinforcement learning methods such as Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) are applicable in this domain, they struggle with computational demands and convergence issues when dealing with large and continuous action spaces. In light of this and recognizing that we can model transitions differentiable for our settings, we propose using a new reinforcement learning framework tailored for sequential combinatorial auctions that leverages first-order gradients. Our extensive evaluations show that our approach achieves significant improvement in revenue over both analytical baselines and standard reinforcement learning algorithms. Furthermore, we scale our approach to scenarios involving up to 50 agents and 50 items, demonstrating its applicability in complex, real-world auction settings. As such, this work advances the computational tools available for auction design and contributes to bridging the gap between theoretical results and practical implementations in sequential auction design.
Releasing Malevolence from Benevolence: The Menace of Benign Data on Machine Unlearning
Ma, Binhao, Zheng, Tianhang, Hu, Hongsheng, Wang, Di, Wang, Shuo, Ba, Zhongjie, Qin, Zhan, Ren, Kui
Machine learning models trained on vast amounts of real or synthetic data often achieve outstanding predictive performance across various domains. However, this utility comes with increasing concerns about privacy, as the training data may include sensitive information. To address these concerns, machine unlearning has been proposed to erase specific data samples from models. While some unlearning techniques efficiently remove data at low costs, recent research highlights vulnerabilities where malicious users could request unlearning on manipulated data to compromise the model. Despite these attacks' effectiveness, perturbed data differs from original training data, failing hash verification. Existing attacks on machine unlearning also suffer from practical limitations and require substantial additional knowledge and resources. To fill the gaps in current unlearning attacks, we introduce the Unlearning Usability Attack. This model-agnostic, unlearning-agnostic, and budget-friendly attack distills data distribution information into a small set of benign data. These data are identified as benign by automatic poisoning detection tools due to their positive impact on model training. While benign for machine learning, unlearning these data significantly degrades model information. Our evaluation demonstrates that unlearning this benign data, comprising no more than 1% of the total training data, can reduce model accuracy by up to 50%. Furthermore, our findings show that well-prepared benign data poses challenges for recent unlearning techniques, as erasing these synthetic instances demands higher resources than regular data. These insights underscore the need for future research to reconsider "data poisoning" in the context of machine unlearning.
Toward Precise Robotic Weed Flaming Using a Mobile Manipulator with a Flamethrower
Wang, Di, Hu, Chengsong, Xie, Shuangyu, Johnson, Joe, Ji, Hojun, Jiang, Yingtao, Bagavathiannan, Muthukumar, Song, Dezhen
Robotic weed flaming is a new and environmentally friendly approach to weed removal in the agricultural field. Using a mobile manipulator equipped with a flamethrower, we design a new system and algorithm to enable effective weed flaming, which requires robotic manipulation with a soft and deformable end effector, as the thermal coverage of the flame is affected by dynamic or unknown environmental factors such as gravity, wind, atmospheric pressure, fuel tank pressure, and pose of the nozzle. System development includes overall design, hardware integration, and software pipeline. To enable precise weed removal, the greatest challenge is to detect and predict dynamic flame coverage in real time before motion planning, which is quite different from a conventional rigid gripper in grasping or a spray gun in painting. Based on the images from two onboard infrared cameras and the pose information of the flamethrower nozzle on a mobile manipulator, we propose a new dynamic flame coverage model. The flame model uses a center-arc curve with a Gaussian cross-section model to describe the flame coverage in real time. The experiments have demonstrated the working system and shown that our model and algorithm can achieve a mean average precision (mAP) of more than 76\% in the reprojected images during online prediction.
Semi-supervised Concept Bottleneck Models
Hu, Lijie, Huang, Tianhao, Xie, Huanyi, Ren, Chenyang, Hu, Zhengyu, Yu, Lu, Wang, Di
Concept Bottleneck Models (CBMs) have garnered increasing attention due to their ability to provide concept-based explanations for black-box deep learning models while achieving high final prediction accuracy using human-like concepts. However, the training of current CBMs heavily relies on the accuracy and richness of annotated concepts in the dataset. These concept labels are typically provided by experts, which can be costly and require significant resources and effort. Additionally, concept saliency maps frequently misalign with input saliency maps, causing concept predictions to correspond to irrelevant input features - an issue related to annotation alignment. To address these limitations, we propose a new framework called SSCBM (Semi-supervised Concept Bottleneck Model). Our SSCBM is suitable for practical situations where annotated data is scarce. By leveraging joint training on both labeled and unlabeled data and aligning the unlabeled data at the concept level, we effectively solve these issues. We proposed a strategy to generate pseudo labels and an alignment loss. Experiments demonstrate that our SSCBM is both effective and efficient. With only 20% labeled data, we achieved 93.19% (96.39% in a fully supervised setting) concept accuracy and 75.51% (79.82% in a fully supervised setting) prediction accuracy.
Closing the Gap: Achieving Global Convergence (Last Iterate) of Actor-Critic under Markovian Sampling with Neural Network Parametrization
Gaur, Mudit, Bedi, Amrit Singh, Wang, Di, Aggarwal, Vaneet
The current state-of-the-art theoretical analysis of Actor-Critic (AC) algorithms significantly lags in addressing the practical aspects of AC implementations. This crucial gap needs bridging to bring the analysis in line with practical implementations of AC. To address this, we advocate for considering the MMCLG criteria: \textbf{M}ulti-layer neural network parametrization for actor/critic, \textbf{M}arkovian sampling, \textbf{C}ontinuous state-action spaces, the performance of the \textbf{L}ast iterate, and \textbf{G}lobal optimality. These aspects are practically significant and have been largely overlooked in existing theoretical analyses of AC algorithms. In this work, we address these gaps by providing the first comprehensive theoretical analysis of AC algorithms that encompasses all five crucial practical aspects (covers MMCLG criteria). We establish global convergence sample complexity bounds of $\tilde{\mathcal{O}}\left({\epsilon^{-3}}\right)$. We achieve this result through our novel use of the weak gradient domination property of MDP's and our unique analysis of the error in critic estimation.