Wang, Chunfeng
Mega-TTS: Zero-Shot Text-to-Speech at Scale with Intrinsic Inductive Bias
Jiang, Ziyue, Ren, Yi, Ye, Zhenhui, Liu, Jinglin, Zhang, Chen, Yang, Qian, Ji, Shengpeng, Huang, Rongjie, Wang, Chunfeng, Yin, Xiang, Ma, Zejun, Zhao, Zhou
Scaling text-to-speech to a large and wild dataset has been proven to be highly effective in achieving timbre and speech style generalization, particularly in zero-shot TTS. However, previous works usually encode speech into latent using audio codec and use autoregressive language models or diffusion models to generate it, which ignores the intrinsic nature of speech and may lead to inferior or uncontrollable results. We argue that speech can be decomposed into several attributes (e.g., content, timbre, prosody, and phase) and each of them should be modeled using a module with appropriate inductive biases. From this perspective, we carefully design a novel and large zero-shot TTS system called Mega-TTS, which is trained with large-scale wild data and models different attributes in different ways: 1) Instead of using latent encoded by audio codec as the intermediate feature, we still choose spectrogram as it separates the phase and other attributes very well. Phase can be appropriately constructed by the GAN-based vocoder and does not need to be modeled by the language model. 2) We model the timbre using global vectors since timbre is a global attribute that changes slowly over time. 3) We further use a VQGAN-based acoustic model to generate the spectrogram and a latent code language model to fit the distribution of prosody, since prosody changes quickly over time in a sentence, and language models can capture both local and long-range dependencies. We scale Mega-TTS to multi-domain datasets with 20K hours of speech and evaluate its performance on unseen speakers. Experimental results demonstrate that Mega-TTS surpasses state-of-the-art TTS systems on zero-shot TTS, speech editing, and cross-lingual TTS tasks, with superior naturalness, robustness, and speaker similarity due to the proper inductive bias of each module. Audio samples are available at https://mega-tts.github.io/demo-page.
LiteG2P: A fast, light and high accuracy model for grapheme-to-phoneme conversion
Wang, Chunfeng, Huang, Peisong, Zou, Yuxiang, Zhang, Haoyu, Liu, Shichao, Yin, Xiang, Ma, Zejun
As a key component of automated speech recognition (ASR) and the front-end in text-to-speech (TTS), grapheme-to-phoneme (G2P) plays the role of converting letters to their corresponding pronunciations. Existing methods are either slow or poor in performance, and are limited in application scenarios, particularly in the process of on-device inference. In this paper, we integrate the advantages of both expert knowledge and connectionist temporal classification (CTC) based neural network and propose a novel method named LiteG2P which is fast, light and theoretically parallel. With the carefully leading design, LiteG2P can be applied both on cloud and on device. Experimental results on the CMU dataset show that the performance of the proposed method is superior to the state-of-the-art CTC based method with 10 times fewer parameters, and even comparable to the state-of-the-art Transformer-based sequence-to-sequence model with less parameters and 33 times less computation.
Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax
Li, Yu, Wang, Tao, Kang, Bingyi, Tang, Sheng, Wang, Chunfeng, Li, Jintao, Feng, Jiashi
Solving long-tail large vocabulary object detection with deep learning based models is a challenging and demanding task, which is however under-explored.In this work, we provide the first systematic analysis on the underperformance of state-of-the-art models in front of long-tail distribution. We find existing detection methods are unable to model few-shot classes when the dataset is extremely skewed, which can result in classifier imbalance in terms of parameter magnitude. Directly adapting long-tail classification models to detection frameworks can not solve this problem due to the intrinsic difference between detection and classification.In this work, we propose a novel balanced group softmax (BAGS) module for balancing the classifiers within the detection frameworks through group-wise training. It implicitly modulates the training process for the head and tail classes and ensures they are both sufficiently trained, without requiring any extra sampling for the instances from the tail classes.Extensive experiments on the very recent long-tail large vocabulary object recognition benchmark LVIS show that our proposed BAGS significantly improves the performance of detectors with various backbones and frameworks on both object detection and instance segmentation. It beats all state-of-the-art methods transferred from long-tail image classification and establishes new state-of-the-art.Code is available at https://github.com/FishYuLi/BalancedGroupSoftmax.