Wang, Chuan
KwaiChat: A Large-Scale Video-Driven Multilingual Mixed-Type Dialogue Corpus
Shi, Xiaoming, Liu, Zeming, Lei, Yiming, Zhang, Chenkai, Leng, Haitao, Wang, Chuan, Liu, Qingjie, Che, Wanxiang, Liu, Shaoguo, Li, Size, Wang, Yunhong
Video-based dialogue systems, such as education assistants, have compelling application value, thereby garnering growing interest. However, the current video-based dialogue systems are limited by their reliance on a single dialogue type, which hinders their versatility in practical applications across a range of scenarios, including question-answering, emotional dialog, etc. In this paper, we identify this challenge as how to generate video-driven multilingual mixed-type dialogues. To mitigate this challenge, we propose a novel task and create a human-to-human video-driven multilingual mixed-type dialogue corpus, termed KwaiChat, containing a total of 93,209 videos and 246,080 dialogues, across 4 dialogue types, 30 domains, 4 languages, and 13 topics. Additionally, we establish baseline models on KwaiChat. An extensive analysis of 7 distinct LLMs on KwaiChat reveals that GPT-4o achieves the best performance but still cannot perform well in this situation even with the help of in-context learning and fine-tuning, which indicates that the task is not trivial and needs further research.
STAMPsy: Towards SpatioTemporal-Aware Mixed-Type Dialogues for Psychological Counseling
Wang, Jieyi, Huang, Yue, Liu, Zeming, Xu, Dexuan, Wang, Chuan, Shi, Xiaoming, Guan, Ruiyuan, Wang, Hongxing, Yue, Weihua, Huang, Yu
Online psychological counseling dialogue systems are trending, offering a convenient and accessible alternative to traditional in-person therapy. However, existing psychological counseling dialogue systems mainly focus on basic empathetic dialogue or QA with minimal professional knowledge and without goal guidance. In many real-world counseling scenarios, clients often seek multi-type help, such as diagnosis, consultation, therapy, console, and common questions, but existing dialogue systems struggle to combine different dialogue types naturally. In this paper, we identify this challenge as how to construct mixed-type dialogue systems for psychological counseling that enable clients to clarify their goals before proceeding with counseling. To mitigate the challenge, we collect a mixed-type counseling dialogues corpus termed STAMPsy, covering five dialogue types, task-oriented dialogue for diagnosis, knowledge-grounded dialogue, conversational recommendation, empathetic dialogue, and question answering, over 5,000 conversations. Moreover, spatiotemporal-aware knowledge enables systems to have world awareness and has been proven to affect one's mental health. Therefore, we link dialogues in STAMPsy to spatiotemporal state and propose a spatiotemporal-aware mixed-type psychological counseling dataset. Additionally, we build baselines on STAMPsy and develop an iterative self-feedback psychological dialogue generation framework, named Self-STAMPsy. Results indicate that clarifying dialogue goals in advance and utilizing spatiotemporal states are effective.
2M-NER: Contrastive Learning for Multilingual and Multimodal NER with Language and Modal Fusion
Wang, Dongsheng, Feng, Xiaoqin, Liu, Zeming, Wang, Chuan
Named entity recognition (NER) is a fundamental task in natural language processing that involves identifying and classifying entities in sentences into pre-defined types. It plays a crucial role in various research fields, including entity linking, question answering, and online product recommendation. Recent studies have shown that incorporating multilingual and multimodal datasets can enhance the effectiveness of NER. This is due to language transfer learning and the presence of shared implicit features across different modalities. However, the lack of a dataset that combines multilingualism and multimodality has hindered research exploring the combination of these two aspects, as multimodality can help NER in multiple languages simultaneously. In this paper, we aim to address a more challenging task: multilingual and multimodal named entity recognition (MMNER), considering its potential value and influence. Specifically, we construct a large-scale MMNER dataset with four languages (English, French, German and Spanish) and two modalities (text and image). To tackle this challenging MMNER task on the dataset, we introduce a new model called 2M-NER, which aligns the text and image representations using contrastive learning and integrates a multimodal collaboration module to effectively depict the interactions between the two modalities. Extensive experimental results demonstrate that our model achieves the highest F1 score in multilingual and multimodal NER tasks compared to some comparative and representative baselines. Additionally, in a challenging analysis, we discovered that sentence-level alignment interferes a lot with NER models, indicating the higher level of difficulty in our dataset.
Application of Zone Method based Machine Learning and Physics-Informed Neural Networks in Reheating Furnaces
Dutta, Ujjal Kr, Lipani, Aldo, Wang, Chuan, Hu, Yukun
Despite the high economic relevance of Foundation Industries, certain components like Reheating furnaces within their manufacturing chain are energy-intensive. Notable energy consumption reduction could be obtained by reducing the overall heating time in furnaces. Computer-integrated Machine Learning (ML) and Artificial Intelligence (AI) powered control systems in furnaces could be enablers in achieving the Net-Zero goals in Foundation Industries for sustainable manufacturing. In this work, due to the infeasibility of achieving good quality data in scenarios like reheating furnaces, classical Hottel's zone method based computational model has been used to generate data for ML and Deep Learning (DL) based model training via regression. It should be noted that the zone method provides an elegant way to model the physical phenomenon of Radiative Heat Transfer (RHT), the dominating heat transfer mechanism in high-temperature processes inside heating furnaces. Using this data, an extensive comparison among a wide range of state-of-the-art, representative ML and DL methods has been made against their temperature prediction performances in varying furnace environments. Owing to their holistic balance among inference times and model performance, DL stands out among its counterparts. To further enhance the Out-Of-Distribution (OOD) generalization capability of the trained DL models, we propose a Physics-Informed Neural Network (PINN) by incorporating prior physical knowledge using a set of novel Energy-Balance regularizers. Our setup is a generic framework, is geometry-agnostic of the 3D structure of the underlying furnace, and as such could accommodate any standard ML regression model, to serve as a Digital Twin of the underlying physical processes, for transitioning Foundation Industries towards Industry 4.0.
LSGNN: Towards General Graph Neural Network in Node Classification by Local Similarity
Chen, Yuhan, Luo, Yihong, Tang, Jing, Yang, Liang, Qiu, Siya, Wang, Chuan, Cao, Xiaochun
Heterophily has been considered as an issue that hurts the performance of Graph Neural Networks (GNNs). To address this issue, some existing work uses a graph-level weighted fusion of the information of multi-hop neighbors to include more nodes with homophily. However, the heterophily might differ among nodes, which requires to consider the local topology. Motivated by it, we propose to use the local similarity (LocalSim) to learn node-level weighted fusion, which can also serve as a plug-and-play module. For better fusion, we propose a novel and efficient Initial Residual Difference Connection (IRDC) to extract more informative multi-hop information. Moreover, we provide theoretical analysis on the effectiveness of LocalSim representing node homophily on synthetic graphs. Extensive evaluations over real benchmark datasets show that our proposed method, namely Local Similarity Graph Neural Network (LSGNN), can offer comparable or superior state-of-the-art performance on both homophilic and heterophilic graphs. Meanwhile, the plug-and-play model can significantly boost the performance of existing GNNs. Our code is provided at https://github.com/draym28/LSGNN.
MidMed: Towards Mixed-Type Dialogues for Medical Consultation
Shi, Xiaoming, Liu, Zeming, Wang, Chuan, Leng, Haitao, Xue, Kui, Zhang, Xiaofan, Zhang, Shaoting
Most medical dialogue systems assume that patients have clear goals (medicine querying, surgical operation querying, etc.) before medical consultation. However, in many real scenarios, due to the lack of medical knowledge, it is usually difficult for patients to determine clear goals with all necessary slots. In this paper, we identify this challenge as how to construct medical consultation dialogue systems to help patients clarify their goals. To mitigate this challenge, we propose a novel task and create a human-to-human mixed-type medical consultation dialogue corpus, termed MidMed, covering five dialogue types: task-oriented dialogue for diagnosis, recommendation, knowledge-grounded dialogue, QA, and chitchat. MidMed covers four departments (otorhinolaryngology, ophthalmology, skin, and digestive system), with 8,175 dialogues. Furthermore, we build baselines on MidMed and propose an instruction-guiding medical dialogue generation framework, termed InsMed, to address this task. Experimental results show the effectiveness of InsMed.
HypperSteer: Hypothetical Steering and Data Perturbation in Sequence Prediction with Deep Learning
Wang, Chuan, Ma, Kwan-Liu
Deep Recurrent Neural Networks (RNN) continues to find success in predictive decision-making with temporal event sequences. Recent studies have shown the importance and practicality of visual analytics in interpreting deep learning models for real-world applications. However, very limited work enables interactions with deep learning models and guides practitioners to form hypotheticals towards the desired prediction outcomes, especially for sequence prediction. Specifically, no existing work has addressed the what-if analysis and value perturbation along different time-steps for sequence outcome prediction. We present a model-agnostic visual analytics tool, HypperSteer, that steers hypothetical testing and allows users to perturb data for sequence predictions interactively. We showcase how HypperSteer helps in steering patient data to achieve desired treatment outcomes and discuss how HypperSteer can serve as a comprehensive solution for other practical scenarios.
Look, Listen and Learn — A Multimodal LSTM for Speaker Identification
Ren, Jimmy (SenseTime Group Limited) | Hu, Yongtao (The University of Hong Kong) | Tai, Yu-Wing (SenseTime Group Limited) | Wang, Chuan (The University of Hong Kong) | Xu, Li (SenseTime Group Limited) | Sun, Wenxiu (SenseTime Group Limited) | Yan, Qiong (SenseTime Group Limited)
Speaker identification refers to the task of localizing the face of a person who has the same identity as the ongoing voice in a video. This task not only requires collective perception over both visual and auditory signals, the robustness to handle severe quality degradations and unconstrained content variations are also indispensable. In this paper, we describe a novel multimodal Long Short-Term Memory (LSTM) architecture which seamlessly unifies both visual and auditory modalities from the beginning of each sequence input. The key idea is to extend the conventional LSTM by not only sharing weights across time steps, but also sharing weights across modalities. We show that modeling the temporal dependency across face and voice can significantly improve the robustness to content quality degradations and variations. We also found that our multimodal LSTM is robustness to distractors, namely the non-speaking identities. We applied our multimodal LSTM to The Big Bang Theory dataset and showed that our system outperforms the state-of-the-art systems in speaker identification with lower false alarm rate and higher recognition accuracy.