Goto

Collaborating Authors

 Wang, Chris


Dynamic Image for 3D MRI Image Alzheimer's Disease Classification

arXiv.org Artificial Intelligence

We propose to apply a 2D CNN architecture to 3D MRI image Alzheimer's disease classification. Training a 3D convolutional neural network (CNN) is time-consuming and computationally expensive. We make use of approximate rank pooling to transform the 3D MRI image volume into a 2D image to use as input to a 2D CNN. We show our proposed CNN model achieves $9.5\%$ better Alzheimer's disease classification accuracy than the baseline 3D models. We also show that our method allows for efficient training, requiring only 20% of the training time compared to 3D CNN models. The code is available online: https://github.com/UkyVision/alzheimer-project.


Layout Design for Intelligent Warehouse by Evolution with Fitness Approximation

arXiv.org Artificial Intelligence

With the rapid growth of the express industry, intelligent warehouses that employ autonomous robots for carrying parcels have been widely used to handle the vast express volume. For such warehouses, the warehouse layout design plays a key role in improving the transportation efficiency. However, this work is still done by human experts, which is expensive and leads to suboptimal results. In this paper, we aim to automate the warehouse layout designing process. We propose a two-layer evolutionary algorithm to efficiently explore the warehouse layout space, where an auxiliary objective fitness approximation model is introduced to predict the outcome of the designed warehouse layout and a two-layer population structure is proposed to incorporate the approximation model into the ordinary evolution framework. Empirical experiments show that our method can efficiently design effective warehouse layouts that outperform both heuristic-designed and vanilla evolution-designed warehouse layouts.