Goto

Collaborating Authors

 Wang, Chi


Hybrid LLM: Cost-Efficient and Quality-Aware Query Routing

arXiv.org Artificial Intelligence

Large language models (LLMs) excel in most NLP tasks but also require expensive cloud servers for deployment due to their size, while smaller models that can be deployed on lower cost (e.g., edge) devices, tend to lag behind in terms of response quality. Therefore in this work we propose a hybrid inference approach which combines their respective strengths to save cost and maintain quality. Our approach uses a router that assigns queries to the small or large model based on the predicted query difficulty and the desired quality level. The desired quality level can be tuned dynamically at test time to seamlessly trade quality for cost as per the scenario requirements. In experiments our approach allows us to make up to 40% fewer calls to the large model, with no drop in response quality.


StateFlow: Enhancing LLM Task-Solving through State-Driven Workflows

arXiv.org Artificial Intelligence

It is a notable trend to use Large Language Models (LLMs) to tackle complex tasks, e.g., tasks that require a sequence of actions and dynamic interaction with tools and external environments. In this paper, we propose StateFlow, a novel LLM-based task-solving paradigm that conceptualizes complex task-solving processes as state machines. In StateFlow, we distinguish between "process grounding" (via state and state transitions) and "sub-task solving" (through actions within a state), enhancing control and interpretability of the task-solving procedure. A state represents the status of a running process. The transitions between states are controlled by heuristic rules or decisions made by the LLM, allowing for a dynamic and adaptive progression. Upon entering a state, a series of actions is executed, involving not only calling LLMs guided by different prompts, but also the utilization of external tools as needed. Our results show that StateFlow significantly enhances LLMs' efficiency. For instance, StateFlow achieves 13% and 28% higher success rates compared to ReAct in InterCode SQL and ALFWorld benchmark, with 5x and 3x less cost respectively. We also show that StateFlow can be combined with iterative refining methods like Reflexion to further improve performance.


Budget-aware Query Tuning: An AutoML Perspective

arXiv.org Artificial Intelligence

Modern database systems rely on cost-based query optimizers to come up with good execution plans for input queries. Such query optimizers rely on cost models to estimate the costs of candidate query execution plans. A cost model represents a function from a set of cost units to query execution cost, where each cost unit specifies the unit cost of executing a certain type of query processing operation (such as table scan or join). These cost units are traditionally viewed as constants, whose values only depend on the platform configuration where the database system runs on top of but are invariant for queries processed by the database system. In this paper, we challenge this classic view by thinking of these cost units as variables instead. We show that, by varying the cost-unit values one can obtain query plans that significantly outperform the default query plans returned by the query optimizer when viewing the cost units as constants. We term this cost-unit tuning process "query tuning" (QT) and show that it is similar to the well-known hyper-parameter optimization (HPO) problem in AutoML. As a result, any state-of-the-art HPO technologies can be applied to QT. We study the QT problem in the context of anytime tuning, which is desirable in practice by constraining the total time spent on QT within a given budget -- we call this problem budget-aware query tuning. We further extend our study from tuning a single query to tuning a workload with multiple queries, and we call this generalized problem budget-aware workload tuning (WT), which aims for minimizing the execution time of the entire workload. WT is more challenging as one needs to further prioritize individual query tuning within the given time budget. We propose solutions to both QT and WT and experimental evaluation using both benchmark and real workloads demonstrates the efficacy of our proposed solutions.


Model-Based Planning and Control for Terrestrial-Aerial Bimodal Vehicles with Passive Wheels

arXiv.org Artificial Intelligence

Terrestrial and aerial bimodal vehicles have gained widespread attention due to their cross-domain maneuverability. Nevertheless, their bimodal dynamics significantly increase the complexity of motion planning and control, thus hindering robust and efficient autonomous navigation in unknown environments. To resolve this issue, we develop a model-based planning and control framework for terrestrial aerial bi-modal vehicles. This work begins by deriving a unified dynamic model and the corresponding differential flatness. Leveraging differential flatness, an optimization-based trajectory planner is proposed, which takes into account both solution quality and computational efficiency. Moreover, we design a tracking controller using nonlinear model predictive control based on the proposed unified dynamic model to achieve accurate trajectory tracking and smooth mode transition. We validate our framework through extensive benchmark comparisons and experiments, demonstrating its effectiveness in terms of planning quality and control performance.


Towards better Human-Agent Alignment: Assessing Task Utility in LLM-Powered Applications

arXiv.org Artificial Intelligence

The rapid development in the field of Large Language Models (LLMs) has led to a surge in applications that facilitate collaboration among multiple agents to assist humans in their daily tasks. However, a significant gap remains in assessing whether LLM-powered applications genuinely enhance user experience and task execution efficiency. This highlights the pressing need for methods to verify utility of LLM-powered applications, particularly by ensuring alignment between the application's functionality and end-user needs. We introduce AgentEval provides an implementation for the math problems, a novel framework designed to simplify the utility verification process by automatically proposing a set of criteria tailored to the unique purpose of any given application. This allows for a comprehensive assessment, quantifying the utility of an application against the suggested criteria. We present a comprehensive analysis of the robustness of quantifier's work.


Spatio-temporal Prompting Network for Robust Video Feature Extraction

arXiv.org Artificial Intelligence

Frame quality deterioration is one of the main challenges in the field of video understanding. To compensate for the information loss caused by deteriorated frames, recent approaches exploit transformer-based integration modules to obtain spatio-temporal information. However, these integration modules are heavy and complex. Furthermore, each integration module is specifically tailored for its target task, making it difficult to generalise to multiple tasks. In this paper, we present a neat and unified framework, called Spatio-Temporal Prompting Network (STPN). It can efficiently extract robust and accurate video features by dynamically adjusting the input features in the backbone network. Specifically, STPN predicts several video prompts containing spatio-temporal information of neighbour frames. Then, these video prompts are prepended to the patch embeddings of the current frame as the updated input for video feature extraction. Moreover, STPN is easy to generalise to various video tasks because it does not contain task-specific modules. Without bells and whistles, STPN achieves state-of-the-art performance on three widely-used datasets for different video understanding tasks, i.e., ImageNetVID for video object detection, YouTubeVIS for video instance segmentation, and GOT-10k for visual object tracking. Code is available at https://github.com/guanxiongsun/vfe.pytorch.


Instruction Mining: When Data Mining Meets Large Language Model Finetuning

arXiv.org Artificial Intelligence

Large language models (LLMs) are initially pretrained for broad capabilities and then finetuned with instruction-following datasets to improve their performance in interacting with humans. Despite advances in finetuning, a standardized guideline for selecting high-quality datasets to optimize this process remains elusive. In this paper, we first propose InstructMining, an innovative method designed for automatically selecting premium instruction-following data for finetuning LLMs. Specifically, InstructMining utilizes natural language indicators as a measure of data quality, applying them to evaluate unseen datasets. During experimentation, we discover that double descent phenomenon exists in large language model finetuning. Based on this observation, we further leverage BlendSearch to help find the best subset among the entire dataset (i.e., 2,532 out of 100,000). Experiment results show that InstructMining-7B achieves state-of-the-art performance on two of the most popular benchmarks: LLM-as-a-judge and Huggingface OpenLLM leaderboard.


EcoAssistant: Using LLM Assistant More Affordably and Accurately

arXiv.org Artificial Intelligence

Today, users ask Large language models (LLMs) as assistants to answer queries that require external knowledge; they ask about the weather in a specific city, about stock prices, and even about where specific locations are within their neighborhood. These queries require the LLM to produce code that invokes external APIs to answer the user's question, yet LLMs rarely produce correct code on the first try, requiring iterative code refinement upon execution results. In addition, using LLM assistants to support high query volumes can be expensive. In this work, we contribute a framework, EcoAssistant, that enables LLMs to answer code-driven queries more affordably and accurately. EcoAssistant contains three components. First, it allows the LLM assistants to converse with an automatic code executor to iteratively refine code or to produce answers based on the execution results. Second, we use a hierarchy of LLM assistants, which attempts to answer the query with weaker, cheaper LLMs before backing off to stronger, expensive ones. Third, we retrieve solutions from past successful queries as in-context demonstrations to help subsequent queries. Empirically, we show that EcoAssistant offers distinct advantages for affordability and accuracy, surpassing GPT-4 by 10 points of success rate with less than 50% of GPT-4's cost.


AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation

arXiv.org Artificial Intelligence

AutoGen is an open-source framework that allows developers to build LLM applications via multiple agents that can converse with each other to accomplish tasks. AutoGen agents are customizable, conversable, and can operate in various modes that employ combinations of LLMs, human inputs, and tools. Using AutoGen, developers can also flexibly define agent interaction behaviors. Both natural language and computer code can be used to program flexible conversation patterns for different applications. AutoGen serves as a generic infrastructure to build diverse applications of various complexities and LLM capacities. Empirical studies demonstrate the effectiveness of the framework in many example applications, with domains ranging from mathematics, coding, question answering, operations research, online decision-making, entertainment, etc.


A Prefrontal Cortex-inspired Architecture for Planning in Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) demonstrate impressive performance on a wide variety of tasks, but they often struggle with tasks that require multi-step reasoning or goal-directed planning. To address this, we take inspiration from the human brain, in which planning is accomplished via the recurrent interaction of specialized modules in the prefrontal cortex (PFC). These modules perform functions such as conflict monitoring, state prediction, state evaluation, task decomposition, and task coordination. We find that LLMs are sometimes capable of carrying out these functions in isolation, but struggle to autonomously coordinate them in the service of a goal. Therefore, we propose a black box architecture with multiple LLM-based (GPT-4) modules. The architecture improves planning through the interaction of specialized PFC-inspired modules that break down a larger problem into multiple brief automated calls to the LLM. We evaluate the combined architecture on two challenging planning tasks -- graph traversal and Tower of Hanoi -- finding that it yields significant improvements over standard LLM methods (e.g., zero-shot prompting or in-context learning). These results demonstrate the benefit of utilizing knowledge from cognitive neuroscience to improve planning in LLMs.