Plotting

 Wang, Chenyu


Hierarchical State Space Models for Continuous Sequence-to-Sequence Modeling

arXiv.org Artificial Intelligence

Reasoning from sequences of raw sensory data is a ubiquitous problem across fields ranging from medical devices to robotics. These problems often involve using long sequences of raw sensor data (e.g. magnetometers, piezoresistors) to predict sequences of desirable physical quantities (e.g. force, inertial measurements). While classical approaches are powerful for locally-linear prediction problems, they often fall short when using real-world sensors. These sensors are typically non-linear, are affected by extraneous variables (e.g. vibration), and exhibit data-dependent drift. For many problems, the prediction task is exacerbated by small labeled datasets since obtaining ground-truth labels requires expensive equipment. In this work, we present Hierarchical State-Space Models (HiSS), a conceptually simple, new technique for continuous sequential prediction. HiSS stacks structured state-space models on top of each other to create a temporal hierarchy. Across six real-world sensor datasets, from tactile-based state prediction to accelerometer-based inertial measurement, HiSS outperforms state-of-the-art sequence models such as causal Transformers, LSTMs, S4, and Mamba by at least 23% on MSE. Our experiments further indicate that HiSS demonstrates efficient scaling to smaller datasets and is compatible with existing data-filtering techniques. Code, datasets and videos can be found on https://hiss-csp.github.io.


Dirichlet Flow Matching with Applications to DNA Sequence Design

arXiv.org Artificial Intelligence

Discrete diffusion or flow models could enable faster and more controllable sequence generation than autoregressive models. We show that na\"ive linear flow matching on the simplex is insufficient toward this goal since it suffers from discontinuities in the training target and further pathologies. To overcome this, we develop Dirichlet flow matching on the simplex based on mixtures of Dirichlet distributions as probability paths. In this framework, we derive a connection between the mixtures' scores and the flow's vector field that allows for classifier and classifier-free guidance. Further, we provide distilled Dirichlet flow matching, which enables one-step sequence generation with minimal performance hits, resulting in $O(L)$ speedups compared to autoregressive models. On complex DNA sequence generation tasks, we demonstrate superior performance compared to all baselines in distributional metrics and in achieving desired design targets for generated sequences. Finally, we show that our classifier-free guidance approach improves unconditional generation and is effective for generating DNA that satisfies design targets. Code is available at https://github.com/HannesStark/dirichlet-flow-matching.


Removing Biases from Molecular Representations via Information Maximization

arXiv.org Artificial Intelligence

High-throughput drug screening - using cell imaging or gene expression measurements as readouts of drug effect - is a critical tool in biotechnology to assess and understand the relationship between the chemical structure and biological activity of a drug. Since large-scale screens have to be divided into multiple experiments, a key difficulty is dealing with batch effects, which can introduce systematic errors and non-biological associations in the data. We propose InfoCORE, an Information maximization approach for COnfounder REmoval, to effectively deal with batch effects and obtain refined molecular representations. InfoCORE establishes a variational lower bound on the conditional mutual information of the latent representations given a batch identifier. It adaptively reweighs samples to equalize their implied batch distribution. Extensive experiments on drug screening data reveal InfoCORE's superior performance in a multitude of tasks including molecular property prediction and molecule-phenotype retrieval. Additionally, we show results for how InfoCORE offers a versatile framework and resolves general distribution shifts and issues of data fairness by minimizing correlation with spurious features or removing sensitive attributes. Representation learning (Bengio et al., 2013) has become pivotal in drug discovery (Wu et al., 2018) and understanding biological systems (Yang et al., 2021b). It serves as a pillar for recognizing drug mechanisms, predicting a drug's activity and toxicity, and identifying disease-associated chemical structures. A central challenge in this context is to accurately capture the nuanced relationship between the chemical structure of a small molecule and its biological or physical attributes. Most molecular representation learning methods only encode a molecule's chemical identity and hence provide unimodal representations (Wang et al., 2022; Xu et al., 2021b). A limitation of such techniques is that molecules with similar structures can have very different effects in the cellular context.


A hybrid Decoder-DeepONet operator regression framework for unaligned observation data

arXiv.org Artificial Intelligence

Deep neural operators (DNOs) have been utilized to approximate nonlinear mappings between function spaces. However, DNOs face the challenge of increased dimensionality and computational cost associated with unaligned observation data. In this study, we propose a hybrid Decoder-DeepONet operator regression framework to handle unaligned data effectively. Additionally, we introduce a Multi-Decoder-DeepONet, which utilizes an average field of training data as input augmentation. The consistencies of the frameworks with the operator approximation theory are provided, on the basis of the universal approximation theorem. Two numerical experiments, Darcy problem and flow-field around an airfoil, are conducted to validate the efficiency and accuracy of the proposed methods. Results illustrate the advantages of Decoder-DeepONet and Multi-Decoder-DeepONet in handling unaligned observation data and showcase their potentials in improving prediction accuracy.


Precise Few-shot Fat-free Thigh Muscle Segmentation in T1-weighted MRI

arXiv.org Artificial Intelligence

Precise thigh muscle volumes are crucial to monitor the motor functionality of patients with diseases that may result in various degrees of thigh muscle loss. T1-weighted MRI is the default surrogate to obtain thigh muscle masks due to its contrast between muscle and fat signals. Deep learning approaches have recently been widely used to obtain these masks through segmentation. However, due to the insufficient amount of precise annotations, thigh muscle masks generated by deep learning approaches tend to misclassify intra-muscular fat (IMF) as muscle impacting the analysis of muscle volumetrics. As IMF is infiltrated inside the muscle, human annotations require expertise and time. Thus, precise muscle masks where IMF is excluded are limited in practice. To alleviate this, we propose a few-shot segmentation framework to generate thigh muscle masks excluding IMF. In our framework, we design a novel pseudo-label correction and evaluation scheme, together with a new noise robust loss for exploiting high certainty areas. The proposed framework only takes $1\%$ of the fine-annotated training dataset, and achieves comparable performance with fully supervised methods according to the experimental results.


HAGEN: Homophily-Aware Graph Convolutional Recurrent Network for Crime Forecasting

arXiv.org Artificial Intelligence

The crime forecasting is an important problem as it greatly contributes to urban safety. Typically, the goal of the problem is to predict different types of crimes for each geographical region (like a neighborhood or censor tract) in the near future. Since nearby regions usually have similar socioeconomic characteristics which indicate similar crime patterns, recent state-of-the-art solutions constructed a distance-based region graph and utilized Graph Neural Network (GNN) techniques for crime forecasting, because the GNN techniques could effectively exploit the latent relationships between neighboring region nodes in the graph. However, this distance-based pre-defined graph cannot fully capture crime correlation between regions that are far from each other but share similar crime patterns. Hence, to make an accurate crime prediction, the main challenge is to learn a better graph that reveals the dependencies between regions in crime occurrences and meanwhile captures the temporal patterns from historical crime records. To address these challenges, we propose an end-to-end graph convolutional recurrent network called HAGEN with several novel designs for crime prediction. Specifically, our framework could jointly capture the crime correlation between regions and the temporal crime dynamics by combining an adaptive region graph learning module with the Diffusion Convolution Gated Recurrent Unit (DCGRU). Based on the homophily assumption of GNN, we propose a homophily-aware constraint to regularize the optimization of the region graph so that neighboring region nodes on the learned graph share similar crime patterns, thus fitting the mechanism of diffusion convolution. It also incorporates crime embedding to model the interdependencies between regions and crime categories. Empirical experiments and comprehensive analysis on two real-world datasets showcase the effectiveness of HAGEN.


Course Concept Expansion in MOOCs with External Knowledge and Interactive Game

arXiv.org Artificial Intelligence

As Massive Open Online Courses (MOOCs) become increasingly popular, it is promising to automatically provide extracurricular knowledge for MOOC users. Suffering from semantic drifts and lack of knowledge guidance, existing methods can not effectively expand course concepts in complex MOOC environments. In this paper, we first build a novel boundary during searching for new concepts via external knowledge base and then utilize heterogeneous features to verify the high-quality results. In addition, to involve human efforts in our model, we design an interactive optimization mechanism based on a game. Our experiments on the four datasets from Coursera and XuetangX show that the proposed method achieves significant improvements(+0.19 by MAP) over existing methods. The source code and datasets have been published.


Nonparametric Variational Auto-encoders for Hierarchical Representation Learning

arXiv.org Machine Learning

The recently developed variational autoencoders (VAEs) have proved to be an effective confluence of the rich representational power of neural networks with Bayesian methods. However, most work on VAEs use a rather simple prior over the latent variables such as standard normal distribution, thereby restricting its applications to relatively simple phenomena. In this work, we propose hierarchical nonparametric variational autoencoders, which combines tree-structured Bayesian nonparametric priors with VAEs, to enable infinite flexibility of the latent representation space. Both the neural parameters and Bayesian priors are learned jointly using tailored variational inference. The resulting model induces a hierarchical structure of latent semantic concepts underlying the data corpus, and infers accurate representations of data instances. We apply our model in video representation learning. Our method is able to discover highly interpretable activity hierarchies, and obtain improved clustering accuracy and generalization capacity based on the learned rich representations.