Not enough data to create a plot.
Try a different view from the menu above.
Wang, Chenan
GuideLLM: Exploring LLM-Guided Conversation with Applications in Autobiography Interviewing
Duan, Jinhao, Zhao, Xinyu, Zhang, Zhuoxuan, Ko, Eunhye, Boddy, Lily, Wang, Chenan, Li, Tianhao, Rasgon, Alexander, Hong, Junyuan, Lee, Min Kyung, Yuan, Chenxi, Long, Qi, Ding, Ying, Chen, Tianlong, Xu, Kaidi
Although Large Language Models (LLMs) succeed in human-guided conversations such as instruction following and question answering, the potential of LLM-guided conversations-where LLMs direct the discourse and steer the conversation's objectives-remains under-explored. In this study, we first characterize LLM-guided conversation into three fundamental components: (i) Goal Navigation; (ii) Context Management; (iii) Empathetic Engagement, and propose GuideLLM as an installation. We then implement an interviewing environment for the evaluation of LLM-guided conversation. Specifically, various topics are involved in this environment for comprehensive interviewing evaluation, resulting in around 1.4k turns of utterances, 184k tokens, and over 200 events mentioned during the interviewing for each chatbot evaluation. We compare GuideLLM with 6 state-of-the-art LLMs such as GPT-4o and Llama-3-70b-Instruct, from the perspective of interviewing quality, and autobiography generation quality. For automatic evaluation, we derive user proxies from multiple autobiographies and employ LLM-as-a-judge to score LLM behaviors. We further conduct a human-involved experiment by employing 45 human participants to chat with GuideLLM and baselines. We then collect human feedback, preferences, and ratings regarding the qualities of conversation and autobiography. Experimental results indicate that GuideLLM significantly outperforms baseline LLMs in automatic evaluation and achieves consistent leading performances in human ratings.
Detection and Recovery Against Deep Neural Network Fault Injection Attacks Based on Contrastive Learning
Wang, Chenan, Zhao, Pu, Wang, Siyue, Lin, Xue
Deep Neural Network (DNN) models when implemented on executing devices as the inference engines are susceptible to Fault Injection Attacks (FIAs) that manipulate model parameters to disrupt inference execution with disastrous performance. This work introduces Contrastive Learning (CL) of visual representations i.e., a self-supervised learning approach into the deep learning training and inference pipeline to implement DNN inference engines with self-resilience under FIAs. Our proposed CL based FIA Detection and Recovery (CFDR) framework features (i) real-time detection with only a single batch of testing data and (ii) fast recovery effective even with only a small amount of unlabeled testing data. Evaluated with the CIFAR-10 dataset on multiple types of FIAs, our CFDR shows promising detection and recovery effectiveness.
Dynamic Adversarial Attacks on Autonomous Driving Systems
Chahe, Amirhosein, Wang, Chenan, Jeyapratap, Abhishek, Xu, Kaidi, Zhou, Lifeng
This paper introduces an attacking mechanism to challenge the resilience of autonomous driving systems. Specifically, we manipulate the decision-making processes of an autonomous vehicle by dynamically displaying adversarial patches on a screen mounted on another moving vehicle. These patches are optimized to deceive the object detection models into misclassifying targeted objects, e.g., traffic signs. Such manipulation has significant implications for critical multi-vehicle interactions such as intersection crossing and lane changing, which are vital for safe and efficient autonomous driving systems. Particularly, we make four major contributions. First, we introduce a novel adversarial attack approach where the patch is not co-located with its target, enabling more versatile and stealthy attacks. Moreover, our method utilizes dynamic patches displayed on a screen, allowing for adaptive changes and movement, enhancing the flexibility and performance of the attack. To do so, we design a Screen Image Transformation Network (SIT-Net), which simulates environmental effects on the displayed images, narrowing the gap between simulated and real-world scenarios. Further, we integrate a positional loss term into the adversarial training process to increase the success rate of the dynamic attack. Finally, we shift the focus from merely attacking perceptual systems to influencing the decision-making algorithms of self-driving systems. Our experiments demonstrate the first successful implementation of such dynamic adversarial attacks in real-world autonomous driving scenarios, paving the way for advancements in the field of robust and secure autonomous driving.
Shifting Attention to Relevance: Towards the Uncertainty Estimation of Large Language Models
Duan, Jinhao, Cheng, Hao, Wang, Shiqi, Zavalny, Alex, Wang, Chenan, Xu, Renjing, Kailkhura, Bhavya, Xu, Kaidi
While Large Language Models (LLMs) have demonstrated remarkable potential in natural language generation and instruction following, a persistent challenge lies in their susceptibility to "hallucinations", which erodes trust in their outputs. Although Uncertainty Quantification (UQ) presents a promising solution, its accurate implementation within the context of LLMs remains a significant hurdle. To address this critical roadblock, our research originates from a fundamental heuristic insight: tokens within auto-regressive LLM-generated text do not equally reflect the underlying meaning. Some tokens carry greater relevance and representativeness than others, owing to the phenomenon of "linguistic redundancy", wherein a select few keywords suffice to convey the essence of lengthy sentences. Regrettably, existing methodologies treat all tokens with equal importance when estimating uncertainty, disregarding these inherent generative inequalities. Our analysis reveals a significant issue with state-of-the-art: numerous tokens (and sentences) of limited semantic significance receive equal or even excessive weighting during uncertainty estimation. To rectify this bias, we propose to jointly Shifting Attention to more Relevant (SAR) components, at both the token- and the sentence-levels for accurate uncertainty estimation. We conduct extensive experiments involving a range of popular "off-the-shelf" LLMs, including instruction-tuned LLMs such as Vicuna, WizardLM, and LLaMA-2-chat, as well as pretrained LLMs like OPT and LLaMA, with model sizes extending up to 33B parameters. We carry out evaluation across various free-form question-answering tasks, encompassing domains such as reading comprehension, science Q&A, and medical Q&A. Our experimental results demonstrate the superior performance of SAR in addressing the challenges of uncertainty estimation within the realm of LLMs.
Semantic Adversarial Attacks via Diffusion Models
Wang, Chenan, Duan, Jinhao, Xiao, Chaowei, Kim, Edward, Stamm, Matthew, Xu, Kaidi
Traditional adversarial attacks concentrate on manipulating clean examples in the pixel space by adding adversarial perturbations. By contrast, semantic adversarial attacks focus on changing semantic attributes of clean examples, such as color, context, and features, which are more feasible in the real world. In this paper, we propose a framework to quickly generate a semantic adversarial attack by leveraging recent diffusion models since semantic information is included in the latent space of well-trained diffusion models. Then there are two variants of this framework: 1) the Semantic Transformation (ST) approach fine-tunes the latent space of the generated image and/or the diffusion model itself; 2) the Latent Masking (LM) approach masks the latent space with another target image and local backpropagation-based interpretation methods. Additionally, the ST approach can be applied in either white-box or black-box settings. Extensive experiments are conducted on CelebA-HQ and AFHQ datasets, and our framework demonstrates great fidelity, generalizability, and transferability compared to other baselines. Our approaches achieve approximately 100% attack success rate in multiple settings with the best FID as 36.61. Code is available at https://github.com/steven202/semantic_adv_via_dm.
Mixture of Robust Experts (MoRE): A Flexible Defense Against Multiple Perturbations
Cheng, Hao, Xu, Kaidi, Wang, Chenan, Lin, Xue, Kailkhura, Bhavya, Goldhahn, Ryan
To tackle the susceptibility of deep neural networks to adversarial examples, the adversarial training has been proposed which provides a notion of security through an inner maximization problem presenting the first-order adversaries embedded within the outer minimization of the training loss. To generalize the adversarial robustness over different perturbation types, the adversarial training method has been augmented with the improved inner maximization presenting a union of multiple perturbations e.g., various l However, the improved inner maximization only enjoys limited flexibility in terms of the allowable perturbation types. In this work, through a gating mechanism, we assemble a set of expert networks, each one either adversarially trained to deal with a particular perturbation type or normally trained for boosting accuracy on clean data. The gating module assigns weights dynamically to each expert to achieve superior accuracy under various data types e.g., adversarial examples, adverse weather perturbations, and clean input. In order to deal with the obfuscated gradients issue, the training of the gating module is conducted together with fine-tuning of the last fully connected layers of expert networks through adversarial training approach.