Wang, Chen
Superhuman AI Disclosure: Impacts on Toxicity, Fairness, and Trust Vary by Expertise and Persona Attributes
Chua, Jaymari, Wang, Chen, Yao, Lina
As artificial intelligence demonstrates surpassing human performance across real-world tasks, disclosing superhuman capabilities poses challenges for fairness, accountability, and trust. To investigate how transparency impacts attitudes and perceptions, we introduce a grounded and validated set of synthetic personas reflecting diverse fairness concerns and technology acceptance levels. Then we evaluate responses in two contrasting domains: (1) a competitive player in StarCraft II, where strategy and high-skill gameplay often elicit toxic interactions, and (2) a cooperative personal-assistant in providing information. Across numerous interactions spanning persona profiles, we test non-disclosure versus explicit superhuman labelling under controlled game outcomes and usage contexts. Our findings reveal sharp domain-specific effects: in StarCraft II, explicitly labelling AI as superhuman, novice personas who learned of it reported lower toxicity and higher fairness-attributing defeat to advanced skill rather than hidden cheating-whereas expert personas found the disclosure statements irksome but still less deceptive than non-disclosure. Conversely, in the LLM as personal-assistant setting, disclosure of superhuman capabilities improved perceived trustworthiness, though it risked AI overreliance among certain persona segments. We release Dataset X-containing persona cards-including profile attributes, disclosure prompts, and detailed interaction logs, accompanied by reproducible protocols and disclaimers for adapting them to diverse tasks. Our results demonstrate that transparency is not a cure-all: while it reduces suspicion and enhances trust in cooperative contexts, it may inflame resistance or disappointment in competitive domains.
From Data to Action: Charting A Data-Driven Path to Combat Antimicrobial Resistance
Fu, Qian, Zhang, Yuzhe, Shu, Yanfeng, Ding, Ming, Yao, Lina, Wang, Chen
Antibiotics are often grouped by their mechanisms of action, such as blocking protein synthesis, disrupting folate biosynthesis, changing cell wall construction, compromising the cell membrane integrity and affecting DNA replication [93, 25]. These antibiotics, whether created in labs or found in nature, serve as the primary defence against bacterial infections. However, bacteria employ a series of strategies in response to resist these antibiotics, including inactivating antibiotics through enzymatic degradation, altering the antibiotic target, modifying cell membrane permeability, and using efflux pumps to maintain intracellular antibiotic concentrations of antibiotics below inhibitory levels [25]. Moreover, the gene transfer of antibiotic-resistant bacteria (ARB) further aggravates this challenge [92].
AnyNav: Visual Neuro-Symbolic Friction Learning for Off-road Navigation
Fu, Taimeng, Zhan, Zitong, Zhao, Zhipeng, Su, Shaoshu, Lin, Xiao, Esfahani, Ehsan Tarkesh, Dantu, Karthik, Chowdhury, Souma, Wang, Chen
Off-road navigation is essential for a wide range of applications in field robotics such as planetary exploration and disaster response. However, it remains an unresolved challenge due to the unstructured environments and inherent complexity of terrain-vehicle interactions. Traditional physics-based methods struggle to accurately model the nonlinear dynamics of these interactions, while data-driven approaches often suffer from overfitting to specific motion patterns, vehicle sizes, and types, limiting their generalizability. To overcome these challenges, we introduce a vision-based friction estimation framework grounded in neuro-symbolic principles, integrating neural networks for visual perception with symbolic reasoning for physical modeling. This enables significantly improved generalization abilities through explicit physical reasoning incorporating the predicted friction. Additionally, we develop a physics-informed planner that leverages the learned friction coefficient to generate physically feasible and efficient paths, along with corresponding speed profiles. We refer to our approach as AnyNav and evaluate it in both simulation and real-world experiments, demonstrating its utility and robustness across various off-road scenarios and multiple types of four-wheeled vehicles. These results mark an important step toward developing neuro-symbolic spatial intelligence to reason about complex, unstructured environments and enable autonomous off-road navigation in challenging scenarios. Video demonstrations are available at https://sairlab.org/anynav/, where the source code will also be released.
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
Zhou, Yuanchang, Hu, Siyu, Wang, Chen, Wang, Lin-Wang, Tan, Guangming, Jia, Weile
Graph neural network universal interatomic potentials (GNN-UIPs) have demonstrated remarkable generalization and transfer capabilities in material discovery and property prediction. These models can accelerate molecular dynamics (MD) simulation by several orders of magnitude while maintaining \textit{ab initio} accuracy, making them a promising new paradigm in material simulations. One notable example is Crystal Hamiltonian Graph Neural Network (CHGNet), pretrained on the energies, forces, stresses, and magnetic moments from the MPtrj dataset, representing a state-of-the-art GNN-UIP model for charge-informed MD simulations. However, training the CHGNet model is time-consuming(8.3 days on one A100 GPU) for three reasons: (i) requiring multi-layer propagation to reach more distant atom information, (ii) requiring second-order derivatives calculation to finish weights updating and (iii) the implementation of reference CHGNet does not fully leverage the computational capabilities. This paper introduces FastCHGNet, an optimized CHGNet, with three contributions: Firstly, we design innovative Force/Stress Readout modules to decompose Force/Stress prediction. Secondly, we adopt massive optimizations such as kernel fusion, redundancy bypass, etc, to exploit GPU computation power sufficiently. Finally, we extend CHGNet to support multiple GPUs and propose a load-balancing technique to enhance GPU utilization. Numerical results show that FastCHGNet reduces memory footprint by a factor of 3.59. The final training time of FastCHGNet can be decreased to \textbf{1.53 hours} on 32 GPUs without sacrificing model accuracy.
iKap: Kinematics-aware Planning with Imperative Learning
Li, Qihang, Chen, Zhuoqun, Zheng, Haoze, He, Haonan, Su, Shaoshu, Geng, Junyi, Wang, Chen
Trajectory planning in robotics aims to generate collision-free pose sequences that can be reliably executed. Recently, vision-to-planning systems have garnered increasing attention for their efficiency and ability to interpret and adapt to surrounding environments. However, traditional modular systems suffer from increased latency and error propagation, while purely data-driven approaches often overlook the robot's kinematic constraints. This oversight leads to discrepancies between planned trajectories and those that are executable. To address these challenges, we propose iKap, a novel vision-to-planning system that integrates the robot's kinematic model directly into the learning pipeline. iKap employs a self-supervised learning approach and incorporates the state transition model within a differentiable bi-level optimization framework. This integration ensures the network learns collision-free waypoints while satisfying kinematic constraints, enabling gradient back-propagation for end-to-end training. Our experimental results demonstrate that iKap achieves higher success rates and reduced latency compared to the state-of-the-art methods. Besides the complete system, iKap offers a visual-to-planning network that seamlessly integrates kinematics into various controllers, providing a robust solution for robots navigating complex and dynamic environments.
Deep Learning-Enhanced Preconditioning for Efficient Conjugate Gradient Solvers in Large-Scale PDE Systems
Li, Rui, Wang, Song, Wang, Chen
Preconditioning techniques are crucial for enhancing the efficiency of solving large-scale linear equation systems that arise from partial differential equation (PDE) discretization. These techniques, such as Incomplete Cholesky factorization (IC) and data-driven neural network methods, accelerate the convergence of iterative solvers like Conjugate Gradient (CG) by approximating the original matrices. This paper introduces a novel approach that integrates Graph Neural Network (GNN) with traditional IC, addressing the shortcomings of direct generation methods based on GNN and achieving significant improvements in computational efficiency and scalability. Experimental results demonstrate an average reduction in iteration counts by 24.8% compared to IC and a two-order-of-magnitude increase in training scale compared to previous methods. A three-dimensional static structural analysis utilizing finite element methods was validated on training sparse matrices of up to 5 million dimensions and inference scales of up to 10 million. Furthermore, the approach demon-strates robust generalization capabilities across scales, facilitating the effective acceleration of CG solvers for large-scale linear equations using small-scale data on modest hardware. The method's robustness and scalability make it a practical solution for computational science.
An Efficient Scene Coordinate Encoding and Relocalization Method
Xu, Kuan, Jiang, Zeyu, Cao, Haozhi, Yuan, Shenghai, Wang, Chen, Xie, Lihua
Scene Coordinate Regression (SCR) is a visual localization technique that utilizes deep neural networks (DNN) to directly regress 2D-3D correspondences for camera pose estimation. However, current SCR methods often face challenges in handling repetitive textures and meaningless areas due to their reliance on implicit triangulation. In this paper, we propose an efficient scene coordinate encoding and relocalization method. Compared with the existing SCR methods, we design a unified architecture for both scene encoding and salient keypoint detection, enabling our system to focus on encoding informative regions, thereby significantly enhancing efficiency. Additionally, we introduce a mechanism that leverages sequential information during both map encoding and relocalization, which strengthens implicit triangulation, particularly in repetitive texture environments. Comprehensive experiments conducted across indoor and outdoor datasets demonstrate that the proposed system outperforms other state-of-the-art (SOTA) SCR methods. Our single-frame relocalization mode improves the recall rate of our baseline by 6.4% and increases the running speed from 56Hz to 90Hz. Furthermore, our sequence-based mode increases the recall rate by 11% while maintaining the original efficiency.
TQA-Bench: Evaluating LLMs for Multi-Table Question Answering with Scalable Context and Symbolic Extension
Qiu, Zipeng, Peng, You, He, Guangxin, Yuan, Binhang, Wang, Chen
The advent of large language models (LLMs) has unlocked great opportunities in complex data management tasks, particularly in question answering (QA) over complicated multi-table relational data. Despite significant progress, systematically evaluating LLMs on multi-table QA remains a critical challenge due to the inherent complexity of analyzing heterogeneous table structures and potential large scale of serialized relational data. Existing benchmarks primarily focus on single-table QA, failing to capture the intricacies of reasoning across multiple relational tables, as required in real-world domains such as finance, healthcare, and e-commerce. To address this gap, we present TQA-Bench, a new multi-table QA benchmark designed to evaluate the capabilities of LLMs in tackling complex QA tasks over relational data. Our benchmark incorporates diverse relational database instances sourced from real-world public datasets and introduces a flexible sampling mechanism to create tasks with varying multi-table context lengths, ranging from 8K to 64K tokens. To ensure robustness and reliability, we integrate symbolic extensions into the evaluation framework, enabling the assessment of LLM reasoning capabilities beyond simple data retrieval or probabilistic pattern matching. We systematically evaluate a range of LLMs, both open-source and closed-source, spanning model scales from 7 billion to 70 billion parameters. Our extensive experiments reveal critical insights into the performance of LLMs in multi-table QA, highlighting both challenges and opportunities for advancing their application in complex, data-driven environments.
A Layered Architecture for Developing and Enhancing Capabilities in Large Language Model-based Software Systems
Zhang, Dawen, Xu, Xiwei, Wang, Chen, Xing, Zhenchang, Mao, Robert
Significant efforts has been made to expand the use of Large Language Models (LLMs) beyond basic language tasks. While the generalizability and versatility of LLMs have enabled widespread adoption, evolving demands in application development often exceed their native capabilities. Meeting these demands may involve a diverse set of methods, such as enhancing creativity through either inference temperature adjustments or creativity-provoking prompts. Selecting the right approach is critical, as different methods lead to trade-offs in engineering complexity, scalability, and operational costs. This paper introduces a layered architecture that organizes LLM software system development into distinct layers, each characterized by specific attributes. By aligning capabilities with these layers, the framework encourages the systematic implementation of capabilities in effective and efficient ways that ultimately supports desired functionalities and qualities. Through practical case studies, we illustrate the utility of the framework. This work offers developers actionable insights for selecting suitable technologies in LLM-based software system development, promoting robustness and scalability.
Membership Inference Attack against Long-Context Large Language Models
Wang, Zixiong, Liu, Gaoyang, Yang, Yang, Wang, Chen
Recent advances in Large Language Models (LLMs) have enabled them to overcome their context window limitations, and demonstrate exceptional retrieval and reasoning capacities on longer context. Quesion-answering systems augmented with Long-Context Language Models (LCLMs) can automatically search massive external data and incorporate it into their contexts, enabling faithful predictions and reducing issues such as hallucinations and knowledge staleness. Existing studies targeting LCLMs mainly concentrate on addressing the so-called lost-in-the-middle problem or improving the inference effiencicy, leaving their privacy risks largely unexplored. In this paper, we aim to bridge this gap and argue that integrating all information into the long context makes it a repository of sensitive information, which often contains private data such as medical records or personal identities. We further investigate the membership privacy within LCLMs external context, with the aim of determining whether a given document or sequence is included in the LCLMs context. Our basic idea is that if a document lies in the context, it will exhibit a low generation loss or a high degree of semantic similarity to the contents generated by LCLMs. We for the first time propose six membership inference attack (MIA) strategies tailored for LCLMs and conduct extensive experiments on various popular models. Empirical results demonstrate that our attacks can accurately infer membership status in most cases, e.g., 90.66% attack F1-score on Multi-document QA datasets with LongChat-7b-v1.5-32k, highlighting significant risks of membership leakage within LCLMs input contexts. Furthermore, we examine the underlying reasons why LCLMs are susceptible to revealing such membership information.