Plotting

 Wang, Ante


A Multi-Agent Framework with Automated Decision Rule Optimization for Cross-Domain Misinformation Detection

arXiv.org Artificial Intelligence

Misinformation spans various domains, but detection methods trained on specific domains often perform poorly when applied to others. With the rapid development of Large Language Models (LLMs), researchers have begun to utilize LLMs for cross-domain misinformation detection. However, existing LLM-based methods often fail to adequately analyze news in the target domain, limiting their detection capabilities. More importantly, these methods typically rely on manually designed decision rules, which are limited by domain knowledge and expert experience, thus limiting the generalizability of decision rules to different domains. To address these issues, we propose a MultiAgent Framework for cross-domain misinformation detection with Automated Decision Rule Optimization (MARO). Under this framework, we first employs multiple expert agents to analyze target-domain news. Subsequently, we introduce a question-reflection mechanism that guides expert agents to facilitate higherquality analysis. Furthermore, we propose a decision rule optimization approach based on carefully-designed cross-domain validation tasks to iteratively enhance the effectiveness of decision rules in different domains. Experimental results and in-depth analysis on commonlyused datasets demonstrate that MARO achieves significant improvements over existing methods.


Investigating Inference-time Scaling for Chain of Multi-modal Thought: A Preliminary Study

arXiv.org Artificial Intelligence

Recently, inference-time scaling of chain-of-thought (CoT) has been demonstrated as a promising approach for addressing multi-modal reasoning tasks. While existing studies have predominantly centered on text-based thinking, the integration of both visual and textual modalities within the reasoning process remains unexplored. In this study, we pioneer the exploration of inference-time scaling with multi-modal thought, aiming to bridge this gap. To provide a comprehensive analysis, we systematically investigate popular sampling-based and tree search-based inference-time scaling methods on 10 challenging tasks spanning various domains. Besides, we uniformly adopt a consistency-enhanced verifier to ensure effective guidance for both methods across different thought paradigms. Results show that multi-modal thought promotes better performance against conventional text-only thought, and blending the two types of thought fosters more diverse thinking. Despite these advantages, multi-modal thoughts necessitate higher token consumption for processing richer visual inputs, which raises concerns in practical applications. We hope that our findings on the merits and drawbacks of this research line will inspire future works in the field.


Don't Get Lost in the Trees: Streamlining LLM Reasoning by Overcoming Tree Search Exploration Pitfalls

arXiv.org Artificial Intelligence

Recent advancements in tree search algorithms guided by verifiers have significantly enhanced the reasoning capabilities of large language models (LLMs), but at the cost of increased computational resources. In this work, we identify two key challenges contributing to this inefficiency: $\textit{over-exploration}$ due to redundant states with semantically equivalent content, and $\textit{under-exploration}$ caused by high variance in verifier scoring leading to frequent trajectory switching. To address these issues, we propose FETCH, an e$\textbf{f}$fici$\textbf{e}$nt $\textbf{t}$ree sear$\textbf{ch}$ framework, which is a flexible, plug-and-play system compatible with various tree search algorithms. Our framework mitigates over-exploration by merging semantically similar states using agglomerative clustering of text embeddings obtained from a fine-tuned SimCSE model. To tackle under-exploration, we enhance verifiers by incorporating temporal difference learning with adjusted $\lambda$-returns during training to reduce variance, and employing a verifier ensemble to aggregate scores during inference. Experiments on GSM8K, GSM-Plus, and MATH datasets demonstrate that our methods significantly improve reasoning accuracy and computational efficiency across four different tree search algorithms, paving the way for more practical applications of LLM-based reasoning. The code will be released upon acceptance.


A Dual-Perspective Metaphor Detection Framework Using Large Language Models

arXiv.org Artificial Intelligence

Metaphor detection, a critical task in natural language processing, involves identifying whether a particular word in a sentence is used metaphorically. Traditional approaches often rely on supervised learning models that implicitly encode semantic relationships based on metaphor theories. However, these methods often suffer from a lack of transparency in their decision-making processes, which undermines the reliability of their predictions. Recent research indicates that LLMs (large language models) exhibit significant potential in metaphor detection. Nevertheless, their reasoning capabilities are constrained by predefined knowledge graphs. To overcome these limitations, we propose DMD, a novel dual-perspective framework that harnesses both implicit and explicit applications of metaphor theories to guide LLMs in metaphor detection and adopts a self-judgment mechanism to validate the responses from the aforementioned forms of guidance. In comparison to previous methods, our framework offers more transparent reasoning processes and delivers more reliable predictions. Experimental results prove the effectiveness of DMD, demonstrating state-of-the-art performance across widely-used datasets.


Not All Languages are Equal: Insights into Multilingual Retrieval-Augmented Generation

arXiv.org Artificial Intelligence

RALMs (Retrieval-Augmented Language Models) broaden their knowledge scope by incorporating external textual resources. However, the multilingual nature of global knowledge necessitates RALMs to handle diverse languages, a topic that has received limited research focus. In this work, we propose \textit{Futurepedia}, a carefully crafted benchmark containing parallel texts across eight representative languages. We evaluate six multilingual RALMs using our benchmark to explore the challenges of multilingual RALMs. Experimental results reveal linguistic inequalities: 1) high-resource languages stand out in Monolingual Knowledge Extraction; 2) Indo-European languages lead RALMs to provide answers directly from documents, alleviating the challenge of expressing answers across languages; 3) English benefits from RALMs' selection bias and speaks louder in multilingual knowledge selection. Based on these findings, we offer advice for improving multilingual Retrieval Augmented Generation. For monolingual knowledge extraction, careful attention must be paid to cascading errors from translating low-resource languages into high-resource ones. In cross-lingual knowledge transfer, encouraging RALMs to provide answers within documents in different languages can improve transfer performance. For multilingual knowledge selection, incorporating more non-English documents and repositioning English documents can help mitigate RALMs' selection bias. Through comprehensive experiments, we underscore the complexities inherent in multilingual RALMs and offer valuable insights for future research.


Mitigating the Negative Impact of Over-association for Conversational Query Production

arXiv.org Artificial Intelligence

Conversational query generation aims at producing search queries from dialogue histories, which are then used to retrieve relevant knowledge from a search engine to help knowledge-based dialogue systems. Trained to maximize the likelihood of gold queries, previous models suffer from the data hunger issue, and they tend to both drop important concepts from dialogue histories and generate irrelevant concepts at inference time. We attribute these issues to the over-association phenomenon where a large number of gold queries are indirectly related to the dialogue topics, because annotators may unconsciously perform reasoning with their background knowledge when generating these gold queries. We carefully analyze the negative effects of this phenomenon on pretrained Seq2seq query producers and then propose effective instance-level weighting strategies for training to mitigate these issues from multiple perspectives. Experiments on two benchmarks, Wizard-of-Internet and DuSinc, show that our strategies effectively alleviate the negative effects and lead to significant performance gains (2%-5% across automatic metrics and human evaluation). Further analysis shows that our model selects better concepts from dialogue histories and is 10 times more data efficient than the baseline. The code is available at https://github.com/DeepLearnXMU/QG-OverAsso.


LiteSearch: Efficacious Tree Search for LLM

arXiv.org Artificial Intelligence

Recent research suggests that tree search algorithms (e.g. Monte Carlo Tree Search) can dramatically boost LLM performance on complex mathematical reasoning tasks. However, they often require more than 10 times the computational resources of greedy decoding due to wasteful search strategies, making them difficult to be deployed in practical applications. This study introduces a novel guided tree search algorithm with dynamic node selection and node-level exploration budget (maximum number of children) calculation to tackle this issue. By considering the search progress towards the final answer (history) and the guidance from a value network (future) trained without any step-wise annotations, our algorithm iteratively selects the most promising tree node before expanding it within the boundaries of the allocated computational budget. Experiments conducted on the GSM8K and TabMWP datasets demonstrate that our approach not only offers competitive performance but also enjoys significantly lower computational costs compared to baseline methods.


Mitigating Catastrophic Forgetting in Large Language Models with Self-Synthesized Rehearsal

arXiv.org Artificial Intelligence

Large language models (LLMs) suffer from catastrophic forgetting during continual learning. Conventional rehearsal-based methods rely on previous training data to retain the model's ability, which may not be feasible in real-world applications. When conducting continual learning based on a publicly-released LLM checkpoint, the availability of the original training data may be non-existent. To address this challenge, we propose a framework called Self-Synthesized Rehearsal (SSR) that uses the LLM to generate synthetic instances for rehearsal. Concretely, we first employ the base LLM for in-context learning to generate synthetic instances. Subsequently, we utilize the latest LLM to refine the instance outputs based on the synthetic inputs, preserving its acquired ability. Finally, we select diverse high-quality synthetic instances for rehearsal in future stages. Experimental results demonstrate that SSR achieves superior or comparable performance compared to conventional rehearsal-based approaches while being more data-efficient. Besides, SSR effectively preserves the generalization capabilities of LLMs in general domains.


Self-Consistency Boosts Calibration for Math Reasoning

arXiv.org Artificial Intelligence

Calibration, which establishes the correlation between accuracy and model confidence, is important for LLM development. We design three off-the-shelf calibration methods based on self-consistency (Wang et al., 2022) for math reasoning tasks. Evaluation on two popular benchmarks (GSM8K and MathQA) using strong open-source LLMs (Mistral and LLaMA2), our methods better bridge model confidence and accuracy than existing methods based on p(True) (Kadavath et al., 2022) or logit (Kadavath et al., 2022).


Fine-Grained Self-Endorsement Improves Factuality and Reasoning

arXiv.org Artificial Intelligence

This work studies improving large language model (LLM) generations at inference time by mitigating fact-conflicting hallucinations. Particularly, we propose a self-endorsement framework that leverages the fine-grained fact-level comparisons across multiple sampled responses. Compared with prior ensemble methods (Wang et al., 2022;Chen et al., 2023)) that perform response-level selection, our approach can better alleviate hallucinations, especially for longform generation tasks. Our approach can broadly benefit smaller and open-source LLMs as it mainly conducts simple content-based comparisons. Experiments on Biographies show that our method can effectively improve the factuality of generations with simple and intuitive prompts across different scales of LLMs. Besides, comprehensive analyses on TriviaQA and GSM8K demonstrate the potential of self-endorsement for broader application.