Wang, Alan
Data-Driven Network Neuroscience: On Data Collection and Benchmark
Xu, Jiaxing, Yang, Yunhan, Huang, David Tse Jung, Gururajapathy, Sophi Shilpa, Ke, Yiping, Qiao, Miao, Wang, Alan, Kumar, Haribalan, McGeown, Josh, Kwon, Eryn
This paper presents a comprehensive and quality collection of functional human brain network data for potential research in the intersection of neuroscience, machine learning, and graph analytics. Anatomical and functional MRI images have been used to understand the functional connectivity of the human brain and are particularly important in identifying underlying neurodegenerative conditions such as Alzheimer's, Parkinson's, and Autism. Recently, the study of the brain in the form of brain networks using machine learning and graph analytics has become increasingly popular, especially to predict the early onset of these conditions. A brain network, represented as a graph, retains rich structural and positional information that traditional examination methods are unable to capture. However, the lack of publicly accessible brain network data prevents researchers from data-driven explorations. One of the main difficulties lies in the complicated domain-specific preprocessing steps and the exhaustive computation required to convert the data from MRI images into brain networks. We bridge this gap by collecting a large amount of MRI images from public databases and a private source, working with domain experts to make sensible design choices, and preprocessing the MRI images to produce a collection of brain network datasets. The datasets originate from 6 different sources, cover 4 brain conditions, and consist of a total of 2,702 subjects. We test our graph datasets on 12 machine learning models to provide baselines and validate the data quality on a recent graph analysis model. To lower the barrier to entry and promote the research in this interdisciplinary field, we release our brain network data and complete preprocessing details including codes at https://doi.org/10.17608/k6.auckland.21397377 and https://github.com/brainnetuoa/data_driven_network_neuroscience.
Neural Pre-Processing: A Learning Framework for End-to-end Brain MRI Pre-processing
He, Xinzi, Wang, Alan, Sabuncu, Mert R.
Head MRI pre-processing involves converting raw images to an intensity-normalized, skull-stripped brain in a standard coordinate space. In this paper, we propose an end-to-end weakly supervised learning approach, called Neural Pre-processing (NPP), for solving all three sub-tasks simultaneously via a neural network, trained on a large dataset without individual sub-task supervision. Because the overall objective is highly under-constrained, we explicitly disentangle geometric-preserving intensity mapping (skull-stripping and intensity normalization) and spatial transformation (spatial normalization). Quantitative results show that our model outperforms state-of-the-art methods which tackle only a single sub-task. Our ablation experiments demonstrate the importance of the architecture design we chose for NPP. Furthermore, NPP affords the user the flexibility to control each of these tasks at inference time. The code and model are freely-available at \url{https://github.com/Novestars/Neural-Pre-processing}.
QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results
Mehta, Raghav, Filos, Angelos, Baid, Ujjwal, Sako, Chiharu, McKinley, Richard, Rebsamen, Michael, Datwyler, Katrin, Meier, Raphael, Radojewski, Piotr, Murugesan, Gowtham Krishnan, Nalawade, Sahil, Ganesh, Chandan, Wagner, Ben, Yu, Fang F., Fei, Baowei, Madhuranthakam, Ananth J., Maldjian, Joseph A., Daza, Laura, Gomez, Catalina, Arbelaez, Pablo, Dai, Chengliang, Wang, Shuo, Reynaud, Hadrien, Mo, Yuan-han, Angelini, Elsa, Guo, Yike, Bai, Wenjia, Banerjee, Subhashis, Pei, Lin-min, AK, Murat, Rosas-Gonzalez, Sarahi, Zemmoura, Ilyess, Tauber, Clovis, Vu, Minh H., Nyholm, Tufve, Lofstedt, Tommy, Ballestar, Laura Mora, Vilaplana, Veronica, McHugh, Hugh, Talou, Gonzalo Maso, Wang, Alan, Patel, Jay, Chang, Ken, Hoebel, Katharina, Gidwani, Mishka, Arun, Nishanth, Gupta, Sharut, Aggarwal, Mehak, Singh, Praveer, Gerstner, Elizabeth R., Kalpathy-Cramer, Jayashree, Boutry, Nicolas, Huard, Alexis, Vidyaratne, Lasitha, Rahman, Md Monibor, Iftekharuddin, Khan M., Chazalon, Joseph, Puybareau, Elodie, Tochon, Guillaume, Ma, Jun, Cabezas, Mariano, Llado, Xavier, Oliver, Arnau, Valencia, Liliana, Valverde, Sergi, Amian, Mehdi, Soltaninejad, Mohammadreza, Myronenko, Andriy, Hatamizadeh, Ali, Feng, Xue, Dou, Quan, Tustison, Nicholas, Meyer, Craig, Shah, Nisarg A., Talbar, Sanjay, Weber, Marc-Andre, Mahajan, Abhishek, Jakab, Andras, Wiest, Roland, Fathallah-Shaykh, Hassan M., Nazeri, Arash, Milchenko1, Mikhail, Marcus, Daniel, Kotrotsou, Aikaterini, Colen, Rivka, Freymann, John, Kirby, Justin, Davatzikos, Christos, Menze, Bjoern, Bakas, Spyridon, Gal, Yarin, Arbel, Tal
Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder translating DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties could enable clinical review of the most uncertain regions, thereby building trust and paving the way toward clinical translation. Several uncertainty estimation methods have recently been introduced for DL medical image segmentation tasks. Developing scores to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that produce high confidence in correct assertions and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentage of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, highlighting the need for uncertainty quantification in medical image analyses.