Wan, Ziyu
ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning
Wan, Ziyu, Li, Yunxiang, Song, Yan, Wang, Hanjing, Yang, Linyi, Schmidt, Mark, Wang, Jun, Zhang, Weinan, Hu, Shuyue, Wen, Ying
Recent research on Reasoning of Large Language Models (LLMs) has sought to further enhance their performance by integrating meta-thinking -- enabling models to monitor, evaluate, and control their reasoning processes for more adaptive and effective problem-solving. However, current single-agent work lacks a specialized design for acquiring meta-thinking, resulting in low efficacy. To address this challenge, we introduce Reinforced Meta-thinking Agents (ReMA), a novel framework that leverages Multi-Agent Reinforcement Learning (MARL) to elicit meta-thinking behaviors, encouraging LLMs to think about thinking. ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions. Through iterative reinforcement learning with aligned objectives, these agents explore and learn collaboration, leading to improved generalization and robustness. Experimental results demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks, including competitive-level mathematical benchmarks and LLM-as-a-Judge benchmarks. Comprehensive ablation studies further illustrate the evolving dynamics of each distinct agent, providing valuable insights into how the meta-thinking reasoning process enhances the reasoning capabilities of LLMs.
ThinkBench: Dynamic Out-of-Distribution Evaluation for Robust LLM Reasoning
Huang, Shulin, Yang, Linyi, Song, Yan, Chen, Shuang, Cui, Leyang, Wan, Ziyu, Zeng, Qingcheng, Wen, Ying, Shao, Kun, Zhang, Weinan, Wang, Jun, Zhang, Yue
Evaluating large language models (LLMs) poses significant challenges, particularly due to issues of data contamination and the leakage of correct answers. To address these challenges, we introduce ThinkBench, a novel evaluation framework designed to evaluate LLMs' reasoning capability robustly. ThinkBench proposes a dynamic data generation method for constructing out-of-distribution (OOD) datasets and offers an OOD dataset that contains 2,912 samples drawn from reasoning tasks. ThinkBench unifies the evaluation of reasoning models and non-reasoning models. We evaluate 16 LLMs and 4 PRMs under identical experimental conditions and show that most of the LLMs' performance are far from robust and they face a certain level of data leakage. By dynamically generating OOD datasets, ThinkBench effectively provides a reliable evaluation of LLMs and reduces the impact of data contamination.
Language Games as the Pathway to Artificial Superhuman Intelligence
Wen, Ying, Wan, Ziyu, Zhang, Shao
The evolution of large language models (LLMs) toward artificial superhuman intelligence (ASI) hinges on data reproduction, a cyclical process in which models generate, curate and retrain on novel data to refine capabilities. Current methods, however, risk getting stuck in a data reproduction trap: optimizing outputs within fixed human-generated distributions in a closed loop leads to stagnation, as models merely recombine existing knowledge rather than explore new frontiers. In this paper, we propose language games as a pathway to expanded data reproduction, breaking this cycle through three mechanisms: (1) \textit{role fluidity}, which enhances data diversity and coverage by enabling multi-agent systems to dynamically shift roles across tasks; (2) \textit{reward variety}, embedding multiple feedback criteria that can drive complex intelligent behaviors; and (3) \textit{rule plasticity}, iteratively evolving interaction constraints to foster learnability, thereby injecting continual novelty. By scaling language games into global sociotechnical ecosystems, human-AI co-evolution generates unbounded data streams that drive open-ended exploration. This framework redefines data reproduction not as a closed loop but as an engine for superhuman intelligence.
Natural Language Reinforcement Learning
Feng, Xidong, Wan, Ziyu, Fu, Haotian, Liu, Bo, Yang, Mengyue, Koushik, Girish A., Hu, Zhiyuan, Wen, Ying, Wang, Jun
Reinforcement Learning (RL) mathematically formulates decision-making with Markov Decision Process (MDP). With MDPs, researchers have achieved remarkable breakthroughs across various domains, including games, robotics, and language models. This paper seeks a new possibility, Natural Language Reinforcement Learning (NLRL), by extending traditional MDP to natural language-based representation space. Specifically, NLRL innovatively redefines RL principles, including task objectives, policy, value function, Bellman equation, and policy iteration, into their language counterparts. With recent advancements in large language models (LLMs), NLRL can be practically implemented to achieve RL-like policy and value improvement by either pure prompting or gradient-based training. Experiments over Maze, Breakthrough, and Tic-Tac-Toe games demonstrate the effectiveness, efficiency, and interpretability of the NLRL framework among diverse use cases. Our code will be released at https://github.com/waterhorse1/Natural-language-RL.
OpenR: An Open Source Framework for Advanced Reasoning with Large Language Models
Wang, Jun, Fang, Meng, Wan, Ziyu, Wen, Muning, Zhu, Jiachen, Liu, Anjie, Gong, Ziqin, Song, Yan, Chen, Lei, Ni, Lionel M., Yang, Linyi, Wen, Ying, Zhang, Weinan
In this technical report, we introduce OpenR, an open-source framework designed to integrate key components for enhancing the reasoning capabilities of large language models (LLMs). OpenR unifies data acquisition, reinforcement learning training (both online and offline), and non-autoregressive decoding into a cohesive software platform. Our goal is to establish an open-source platform and community to accelerate the development of LLM reasoning. Inspired by the success of OpenAI's o1 model, which demonstrated improved reasoning abilities through step-by-step reasoning and reinforcement learning, OpenR integrates test-time compute, reinforcement learning, and process supervision to improve reasoning in LLMs. Our work is the first to provide an open-source framework that explores the core techniques of OpenAI's o1 model with reinforcement learning, achieving advanced reasoning capabilities beyond traditional autoregressive methods. We demonstrate the efficacy of OpenR by evaluating it on the MATH dataset, utilising publicly available data and search methods. Our initial experiments confirm substantial gains, with relative improvements in reasoning and performance driven by test-time computation and reinforcement learning through process reward models. The OpenR framework, including code, models, and datasets, is accessible at https://openreasoner.github.io.
$\epsilon$-VAE: Denoising as Visual Decoding
Zhao, Long, Woo, Sanghyun, Wan, Ziyu, Li, Yandong, Zhang, Han, Gong, Boqing, Adam, Hartwig, Jia, Xuhui, Liu, Ting
In generative modeling, tokenization simplifies complex data into compact, structured representations, creating a more efficient, learnable space. For highdimensional visual data, it reduces redundancy and emphasizes key features for high-quality generation. Current visual tokenization methods rely on a traditional autoencoder framework, where the encoder compresses data into latent representations, and the decoder reconstructs the original input. In this work, we offer a new perspective by proposing denoising as decoding, shifting from single-step reconstruction to iterative refinement. Specifically, we replace the decoder with a diffusion process that iteratively refines noise to recover the original image, guided by the latents provided by the encoder. We evaluate our approach by assessing both reconstruction (rFID) and generation quality (FID), comparing it to state-of-theart autoencoding approach. We hope this work offers new insights into integrating iterative generation and autoencoding for improved compression and generation. Generative modeling aims to capture the underlying distribution of training data, enabling realistic sample generation during inference. A key preprocessing step is tokenization, which converts raw data into discrete tokens or continuous latent representations. These compact representations allow models to efficiently learn complex patterns, enhancing the quality of generated outputs.
Reinforcing Language Agents via Policy Optimization with Action Decomposition
Wen, Muning, Wan, Ziyu, Zhang, Weinan, Wang, Jun, Wen, Ying
Language models as intelligent agents push the boundaries of sequential decision-making agents but struggle with limited knowledge of environmental dynamics and exponentially huge action space. Recent efforts like GLAM and TWOSOME manually constrain the action space to a restricted subset and employ reinforcement learning to align agents' knowledge with specific environments. However, they overlook fine-grained credit assignments for intra-action tokens, which is essential for efficient language agent optimization, and rely on human's prior knowledge to restrict action space. This paper proposes decomposing language agent optimization from the action level to the token level, offering finer supervision for each intra-action token and manageable optimization complexity in environments with unrestricted action spaces. Beginning with the simplification of flattening all actions, we theoretically explore the discrepancies between action-level optimization and this naive token-level optimization. We then derive the Bellman backup with Action Decomposition (BAD) to integrate credit assignments for both intra-action and inter-action tokens, effectively eliminating the discrepancies. Implementing BAD within the PPO algorithm, we introduce Policy Optimization with Action Decomposition (POAD). POAD benefits from a finer-grained credit assignment process and lower optimization complexity, leading to enhanced learning efficiency and generalization abilities in aligning language agents with interactive environments. We validate POAD across diverse testbeds, with results affirming the advantages of our approach and the correctness of our theoretical analysis.
Natural Language Reinforcement Learning
Feng, Xidong, Wan, Ziyu, Yang, Mengyue, Wang, Ziyan, Koushiks, Girish A., Du, Yali, Wen, Ying, Wang, Jun
Reinforcement Learning (RL) has shown remarkable abilities in learning policies for decision-making tasks. However, RL is often hindered by issues such as low sample efficiency, lack of interpretability, and sparse supervision signals. To tackle these limitations, we take inspiration from the human learning process and introduce Natural Language Reinforcement Learning (NLRL), which innovatively combines RL principles with natural language representation. Specifically, NLRL redefines RL concepts like task objectives, policy, value function, Bellman equation, and policy iteration in natural language space. We present how NLRL can be practically implemented with the latest advancements in large language models (LLMs) like GPT-4. Initial experiments over tabular MDPs demonstrate the effectiveness, efficiency, and also interpretability of the NLRL framework.
Alphazero-like Tree-Search can Guide Large Language Model Decoding and Training
Feng, Xidong, Wan, Ziyu, Wen, Muning, Wen, Ying, Zhang, Weinan, Wang, Jun
Large language models (LLMs) typically employ sampling or beam search, accompanied by prompts such as Chain-of-Thought (CoT), to boost reasoning and decoding ability. Recent work like Tree-of-Thought (ToT) and Reasoning via Planning (RAP) aim to augment the reasoning capabilities of LLMs by utilizing tree-search algorithms to guide multi-step reasoning. These methods mainly focus on LLMs' reasoning ability during inference and heavily rely on human-designed prompts to activate LLM as a value function, which lacks general applicability and scalability. To address these limitations, we present an AlphaZero-like tree-search framework for LLMs (termed TS-LLM), systematically illustrating how tree-search with a learned value function can guide LLMs' decoding ability. TS-LLM distinguishes itself in two key ways: (1) Leveraging a learned value function, our approach can be generally applied to different tasks beyond reasoning (such as RLHF alignment), and LLMs of any size, without prompting advanced, large-scale models. (2) It can guide LLM's decoding during both inference and training. Empirical evaluations across reasoning, planning, and RLHF alignment tasks validate the effectiveness of TS-LLM, even on trees with a depth of 64.
On Realization of Intelligent Decision-Making in the Real World: A Foundation Decision Model Perspective
Wen, Ying, Wan, Ziyu, Zhou, Ming, Hou, Shufang, Cao, Zhe, Le, Chenyang, Chen, Jingxiao, Tian, Zheng, Zhang, Weinan, Wang, Jun
The pervasive uncertainty and dynamic nature of real-world environments present significant challenges for the widespread implementation of machine-driven Intelligent Decision-Making (IDM) systems. Consequently, IDM should possess the ability to continuously acquire new skills and effectively generalize across a broad range of applications. The advancement of Artificial General Intelligence (AGI) that transcends task and application boundaries is critical for enhancing IDM. Recent studies have extensively investigated the Transformer neural architecture as a foundational model for various tasks, including computer vision, natural language processing, and reinforcement learning. We propose that a Foundation Decision Model (FDM) can be developed by formulating diverse decision-making tasks as sequence decoding tasks using the Transformer architecture, offering a promising solution for expanding IDM applications in complex real-world situations. In this paper, we discuss the efficiency and generalization improvements offered by a foundation decision model for IDM and explore its potential applications in multi-agent game AI, production scheduling, and robotics tasks. Lastly, we present a case study demonstrating our FDM implementation, DigitalBrain (DB1) with 1.3 billion parameters, achieving human-level performance in 870 tasks, such as text generation, image captioning, video game playing, robotic control, and traveling salesman problems. As a foundation decision model, DB1 represents an initial step toward more autonomous and efficient real-world IDM applications.