Goto

Collaborating Authors

 Wan, Zeyu


SLR: Learning Quadruped Locomotion without Privileged Information

arXiv.org Artificial Intelligence

Traditional reinforcement learning control for quadruped robots often relies on privileged information, demanding meticulous selection and precise estimation, thereby imposing constraints on the development process. This work proposes a Self-learning Latent Representation (SLR) method, which achieves high-performance control policy learning without the need for privileged information. To enhance the credibility of our proposed method's evaluation, SLR is compared with open-source code repositories of state-of-the-art algorithms, retaining the original authors' configuration parameters. Across four repositories, SLR consistently outperforms the reference results. Ultimately, the trained policy and encoder empower the quadruped robot to navigate steps, climb stairs, ascend rocks, and traverse various challenging terrains. Robot experiment videos are at https://11chens.github.io/SLR/


LP-SLAM: Language-Perceptive RGB-D SLAM system based on Large Language Model

arXiv.org Artificial Intelligence

Simultaneous localization and mapping (SLAM) is a critical technology that enables autonomous robots to be aware of their surrounding environment. With the development of deep learning, SLAM systems can achieve a higher level of perception of the environment, including the semantic and text levels. However, current works are limited in their ability to achieve a natural-language level of perception of the world. To address this limitation, we propose LP-SLAM, the first language-perceptive SLAM system that leverages large language models (LLMs). LP-SLAM has two major features: (a) it can detect text in the scene and determine whether it represents a landmark to be stored during the tracking and mapping phase, and (b) it can understand natural language input from humans and provide guidance based on the generated map. We illustrated three usages of the LLM in the system including text cluster, landmark judgment, and natural language navigation. Our proposed system represents an advancement in the field of LLMs based SLAM and opens up new possibilities for autonomous robots to interact with their environment in a more natural and intuitive way.


Tac2Structure: Object Surface Reconstruction Only through Multi Times Touch

arXiv.org Artificial Intelligence

Inspired by humans' ability to perceive the surface texture of unfamiliar objects without relying on vision, the sense of touch can play a crucial role in robots exploring the environment, particularly in scenes where vision is difficult to apply, or occlusion is inevitable. Existing tactile surface reconstruction methods rely on external sensors or have strong prior assumptions, making the operation complex and limiting their application scenarios. This paper presents a framework for low-drift surface reconstruction through multiple tactile measurements, Tac2Structure. Compared with existing algorithms, the proposed method uses only a new vision-based tactile sensor without relying on external devices. Aiming at the difficulty that reconstruction accuracy is easily affected by the pressure at contact, we propose a correction algorithm to adapt it. The proposed method also reduces the accumulative errors that occur easily during global object surface reconstruction. Multi-frame tactile measurements can accurately reconstruct object surfaces by jointly using the point cloud registration algorithm, loop-closure detection algorithm based on deep learning, and pose graph optimization algorithm. Experiments verify that Tac2Structure can achieve millimeter-level accuracy in reconstructing the surface of objects, providing accurate tactile information for the robot to perceive the surrounding environment.