Goto

Collaborating Authors

 Wan, Rui


VMTS: Vision-Assisted Teacher-Student Reinforcement Learning for Multi-Terrain Locomotion in Bipedal Robots

arXiv.org Artificial Intelligence

Bipedal robots, due to their anthropomorphic design, offer substantial potential across various applications, yet their control is hindered by the complexity of their structure. Currently, most research focuses on proprioception-based methods, which lack the capability to overcome complex terrain. While visual perception is vital for operation in human-centric environments, its integration complicates control further. Recent reinforcement learning (RL) approaches have shown promise in enhancing legged robot locomotion, particularly with proprioception-based methods. However, terrain adaptability, especially for bipedal robots, remains a significant challenge, with most research focusing on flat-terrain scenarios. In this paper, we introduce a novel mixture of experts teacher-student network RL strategy, which enhances the performance of teacher-student policies based on visual inputs through a simple yet effective approach. Our method combines terrain selection strategies with the teacher policy, resulting in superior performance compared to traditional models. Additionally, we introduce an alignment loss between the teacher and student networks, rather than enforcing strict similarity, to improve the student's ability to navigate diverse terrains. We validate our approach experimentally on the Limx Dynamic P1 bipedal robot, demonstrating its feasibility and robustness across multiple terrain types.


PTA-Det: Point Transformer Associating Point cloud and Image for 3D Object Detection

arXiv.org Artificial Intelligence

In autonomous driving, 3D object detection based on multi-modal data has become an indispensable approach when facing complex environments around the vehicle. During multi-modal detection, LiDAR and camera are simultaneously applied for capturing and modeling. However, due to the intrinsic discrepancies between the LiDAR point and camera image, the fusion of the data for object detection encounters a series of problems. Most multi-modal detection methods perform even worse than LiDAR-only methods. In this investigation, we propose a method named PTA-Det to improve the performance of multi-modal detection. Accompanied by PTA-Det, a Pseudo Point Cloud Generation Network is proposed, which can convert image information including texture and semantic features by pseudo points. Thereafter, through a transformer-based Point Fusion Transition (PFT) module, the features of LiDAR points and pseudo points from image can be deeply fused under a unified point-based representation. The combination of these modules can conquer the major obstacle in feature fusion across modalities and realizes a complementary and discriminative representation for proposal generation. Extensive experiments on the KITTI dataset show the PTA-Det achieves a competitive result and support its effectiveness.


Sparse Cross-scale Attention Network for Efficient LiDAR Panoptic Segmentation

arXiv.org Artificial Intelligence

Two major challenges of 3D LiDAR Panoptic Segmentation (PS) are that point clouds of an object are surface-aggregated and thus hard to model the long-range dependency especially for large instances, and that objects are too close to separate each other. Recent literature addresses these problems by time-consuming grouping processes such as dual-clustering, mean-shift offsets, etc., or by bird-eye-view (BEV) dense centroid representation that downplays geometry. However, the long-range geometry relationship has not been sufficiently modeled by local feature learning from the above methods. To this end, we present SCAN, a novel sparse cross-scale attention network to first align multi-scale sparse features with global voxel-encoded attention to capture the long-range relationship of instance context, which can boost the regression accuracy of the over-segmented large objects. For the surface-aggregated points, SCAN adopts a novel sparse class-agnostic representation of instance centroids, which can not only maintain the sparsity of aligned features to solve the under-segmentation on small objects, but also reduce the computation amount of the network through sparse convolution. Our method outperforms previous methods by a large margin in the SemanticKITTI dataset for the challenging 3D PS task, achieving 1st place with a real-time inference speed.