Wan, Guojia
Efficient Relational Context Perception for Knowledge Graph Completion
Tu, Wenkai, Wan, Guojia, Shang, Zhengchun, Du, Bo
Knowledge Graphs (KGs) provide a structured representation of knowledge but often suffer from challenges of incompleteness. To address this, link prediction or knowledge graph completion (KGC) aims to infer missing new facts based on existing facts in KGs. Previous knowledge graph embedding models are limited in their ability to capture expressive features, especially when compared to deeper, multi-layer models. These approaches also assign a single static embedding to each entity and relation, disregarding the fact that entities and relations can exhibit different behaviors in varying graph contexts. Due to complex context over a fact triple of a KG, existing methods have to leverage complex non-linear context encoder, like transformer, to project entity and relation into low dimensional representations, resulting in high computation cost. To overcome these limitations, we propose Triple Receptance Perception (TRP) architecture to model sequential information, enabling the learning of dynamic context of entities and relations. Then we use tensor decomposition to calculate triple scores, providing robust relational decoding capabilities. This integration allows for more expressive representations. Experiments on benchmark datasets such as YAGO3-10, UMLS, FB15k, and FB13 in link prediction and triple classification tasks demonstrate that our method performs better than several state-of-the-art models, proving the effectiveness of the integration.
Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning
Xia, Tianle, Ding, Liang, Wan, Guojia, Zhan, Yibing, Du, Bo, Tao, Dacheng
Answering complex queries over incomplete knowledge graphs (KGs) is a challenging job. Most previous works have focused on learning entity/relation embeddings and simulating first-order logic operators with various neural networks. However, they are bottlenecked by the inability to share world knowledge to improve logical reasoning, thus resulting in suboptimal performance. In this paper, we propose a complex reasoning schema over KG upon large language models (LLMs), containing a curriculum-based logical-aware instruction tuning framework, named LACT. Specifically, we augment the arbitrary first-order logical queries via binary tree decomposition, to stimulate the reasoning capability of LLMs. To address the difficulty gap among different types of complex queries, we design a simple and flexible logic-aware curriculum learning framework. Experiments across widely used datasets demonstrate that LACT has substantial improvements~(brings an average +5.5% MRR score) over advanced methods, achieving the new state-of-the-art. Our code and model will be released at GitHub and huggingface soon.