Walraven, Erwin
Open-World Visual Reasoning by a Neuro-Symbolic Program of Zero-Shot Symbols
Burghouts, Gertjan, Hillerström, Fieke, Walraven, Erwin, van Bekkum, Michael, Ruis, Frank, Sijs, Joris, van Mil, Jelle, Dijk, Judith
We consider the problem of finding spatial configurations of multiple objects in images, e.g., a mobile inspection robot is tasked to localize abandoned tools on the floor. We define the spatial configuration of objects by first-order logic in terms of relations and attributes. A neuro-symbolic program matches the logic formulas to probabilistic object proposals for the given image, provided by language-vision models by querying them for the symbols. This work is the first to combine neuro-symbolic programming (reasoning) and language-vision models (learning) to find spatial configurations of objects in images in an open world setting. We show the effectiveness by finding abandoned tools on floors and leaking pipes. We find that most prediction errors are due to biases in the language-vision model.
PERFEX: Classifier Performance Explanations for Trustworthy AI Systems
Walraven, Erwin, Adhikari, Ajaya, Veenman, Cor J.
Explainability of a classification model is crucial when deployed in real-world decision support systems. Explanations make predictions actionable to the user and should inform about the capabilities and limitations of the system. Existing explanation methods, however, typically only provide explanations for individual predictions. Information about conditions under which the classifier is able to support the decision maker is not available, while for instance information about when the system is not able to differentiate classes can be very helpful. In the development phase it can support the search for new features or combining models, and in the operational phase it supports decision makers in deciding e.g. not to use the system. This paper presents a method to explain the qualities of a trained base classifier, called PERFormance EXplainer (PERFEX). Our method consists of a meta tree learning algorithm that is able to predict and explain under which conditions the base classifier has a high or low error or any other classification performance metric. We evaluate PERFEX using several classifiers and datasets, including a case study with urban mobility data. It turns out that PERFEX typically has high meta prediction performance even if the base classifier is hardly able to differentiate classes, while giving compact performance explanations.
Point-Based Value Iteration for Finite-Horizon POMDPs
Walraven, Erwin, Spaan, Matthijs T. J.
Partially Observable Markov Decision Processes (POMDPs) are a popular formalism for sequential decision making in partially observable environments. Since solving POMDPs to optimality is a difficult task, point-based value iteration methods are widely used. These methods compute an approximate POMDP solution, and in some cases they even provide guarantees on the solution quality, but these algorithms have been designed for problems with an infinite planning horizon. In this paper we discuss why state-of-the-art point-based algorithms cannot be easily applied to finite-horizon problems that do not include discounting. Subsequently, we present a general point-based value iteration algorithm for finite-horizon problems which provides solutions with guarantees on solution quality. Furthermore, we introduce two heuristics to reduce the number of belief points considered during execution, which lowers the computational requirements. In experiments we demonstrate that the algorithm is an effective method for solving finite-horizon POMDPs.
Column Generation Algorithms for Constrained POMDPs
Walraven, Erwin, Spaan, Matthijs T. J.
In several real-world domains it is required to plan ahead while there are finite resources available for executing the plan. The limited availability of resources imposes constraints on the plans that can be executed, which need to be taken into account while computing a plan. A Constrained Partially Observable Markov Decision Process (Constrained POMDP) can be used to model resource-constrained planning problems which include uncertainty and partial observability. Constrained POMDPs provide a framework for computing policies which maximize expected reward, while respecting constraints on a secondary objective such as cost or resource consumption. Column generation for linear programming can be used to obtain Constrained POMDP solutions. This method incrementally adds columns to a linear program, in which each column corresponds to a POMDP policy obtained by solving an unconstrained subproblem. Column generation requires solving a potentially large number of POMDPs, as well as exact evaluation of the resulting policies, which is computationally difficult. We propose a method to solve subproblems in a two-stage fashion using approximation algorithms. First, we use a tailored point-based POMDP algorithm to obtain an approximate subproblem solution. Next, we convert this approximate solution into a policy graph, which we can evaluate efficiently. The resulting algorithm is a new approximate method for Constrained POMDPs in single-agent settings, but also in settings in which multiple independent agents share a global constraint. Experiments based on several domains show that our method outperforms the current state of the art.
Bootstrapping LPs in Value Iteration for Multi-Objective and Partially Observable MDPs
Roijers, Diederik M. (Vrije Universiteit Brussel, Vrije Universiteit Amsterdam) | Walraven, Erwin (Delft University of Technology) | Spaan, Matthijs T. J. (Delft University of Technology)
Iteratively solving a set of linear programs (LPs) is a common strategy for solving various decision-making problems in Artificial Intelligence, such as planning in multi-objective or partially observable Markov Decision Processes (MDPs). A prevalent feature is that the solutions to these LPs become increasingly similar as the solving algorithm converges, because the solution computed by the algorithm approaches the fixed point of a Bellman backup operator. In this paper, we propose to speed up the solving process of these LPs by bootstrapping based on similar LPs solved previously. We use these LPs to initialize a subset of relevant LP constraints, before iteratively generating the remaining constraints. The resulting algorithm is the first to consider such information sharing across iterations. We evaluate our approach on planning in Multi-Objective MDPs (MOMDPs) and Partially Observable MDPs (POMDPs), showing that it solves fewer LPs than the state of the art, which leads to a significant speed-up. Moreover, for MOMDPs we show that our method scales better in both the number of states and the number of objectives, which is vital for multi-objective planning.
Accelerated Vector Pruning for Optimal POMDP Solvers
Walraven, Erwin (Delft University of Technology) | Spaan, Matthijs T. J. (Delft University of Technology)
Partially Observable Markov Decision Processes (POMDPs) are powerful models for planning under uncertainty in partially observable domains. However, computing optimal solutions for POMDPs is challenging because of the high computational requirements of POMDP solution algorithms. Several algorithms use a subroutine to prune dominated vectors in value functions, which requires a large number of linear programs (LPs) to be solved and it represents a large part of the total running time. In this paper we show how the LPs in POMDP pruning subroutines can be decomposed using a Benders decomposition. The resulting algorithm incrementally adds LP constraints and uses only a small fraction of the constraints. Our algorithm significantly improves the performance of existing pruning methods and the commonly used incremental pruning algorithm. Our new variant of incremental pruning is the fastest optimal pruning-based POMDP algorithm.
Bounding the Probability of Resource Constraint Violations in Multi-Agent MDPs
Nijs, Frits de (Delft University of Technology) | Walraven, Erwin (Delft University of Technology) | Weerdt, Mathijs M. de (Delft University of Technology) | Spaan, Matthijs T. J. (Delft University of Technology)
Multi-agent planning problems with constraints on global resource consumption occur in several domains. Existing algorithms for solving Multi-agent Markov Decision Processes can compute policies that meet a resource constraint in expectation, but these policies provide no guarantees on the probability that a resource constraint violation will occur. We derive a method to bound constraint violation probabilities using Hoeffding's inequality. This method is applied to two existing approaches for computing policies satisfying constraints: the Constrained MDP framework and a Column Generation approach. We also introduce an algorithm to adaptively relax the bound up to a given maximum violation tolerance. Experiments on a hard toy problem show that the resulting policies outperform static optimal resource allocations to an arbitrary level. By testing the algorithms on more realistic planning domains from the literature, we demonstrate that the adaptive bound is able to efficiently trade off violation probability with expected value, outperforming state-of-the-art planners.
Planning under Uncertainty for Aggregated Electric Vehicle Charging Using Markov Decision Processes
Walraven, Erwin (Delft University of Technology) | Spaan, Matthijs T. J. (Delft University of Technology)
The increasing penetration of renewable energy sources and electric vehicles raises important challenges related to the operation of electricity grids. For instance, the amount of power generated by wind turbines is time-varying and dependent on the weather, which makes it hard to match flexible electric vehicle demand and uncertain wind power supply. In this paper we propose a vehicle aggregation framework which uses Markov Decision Processes to control charging of multiple electric vehicles and deals with uncertainty in renewable supply. We present a grouping technique to address the scalability aspects of our framework. In experiments we show that the aggregation framework maximizes the profit of the aggregator while reducing usage of conventionally-generated power and cost of customers.
Planning Under Uncertainty with Weighted State Scenarios
Walraven, Erwin (Delft University of Technology) | Spaan, Matthijs T. J. (Delft University of Technology)
External factors are hard to model using a Markovian state in several real-world planning domains. Although planning can be difficult in such domains, it may be possible to exploit long-term dependencies between states of the environment during planning. We introduce weighted state scenarios to model long-term sequences of states, and we use a model based on a Partially Observable Markov Decision Process to reason about scenarios during planning. Experiments show that our model outperforms other methods for decision making in two real-world domains.