Wallace, Mark
Shifting Attention to You: Personalized Brain-Inspired AI Models
Zhao, Stephen Chong, Hu, Yang, Lee, Jason, Bender, Andrew, Mazumdar, Trisha, Wallace, Mark, Tovar, David A.
The integration of human and artificial intelligence represents a scientific opportunity to advance our understanding of information processing, as each system offers unique computational insights that can enhance and inform the other. The synthesis of human cognitive principles with artificial intelligence has the potential to produce more interpretable and functionally aligned computational models, while simultaneously providing a formal framework for investigating the neural mechanisms underlying perception, learning, and decision-making through systematic model comparisons and representational analyses. In this study, we introduce personalized brain-inspired modeling that integrates human behavioral embeddings and neural data to align with cognitive processes. We took a stepwise approach, fine-tuning the Contrastive Language-Image Pre-training (CLIP) model with large-scale behavioral decisions, group-level neural data, and finally, participant-level neural data within a broader framework that we have named CLIP-Human-Based Analysis (CLIP-HBA). We found that fine-tuning on behavioral data enhances its ability to predict human similarity judgments while indirectly aligning it with dynamic representations captured via MEG. To further gain mechanistic insights into the temporal evolution of cognitive processes, we introduced a model specifically fine-tuned on millisecond-level MEG neural dynamics (CLIP-HBA-MEG). This model resulted in enhanced temporal alignment with human neural processing while still showing improvement on behavioral alignment. Finally, we trained individualized models on participant-specific neural data, effectively capturing individualized neural dynamics and highlighting the potential for personalized AI systems. These personalized systems have far-reaching implications for the fields of medicine, cognitive research, human-computer interfaces, and AI development.
A Recursive Scenario Decomposition Algorithm for Combinatorial Multistage Stochastic Optimisation Problems
Hemmi, David (Monash University) | Tack, Guido (Data61) | Wallace, Mark (Monash University)
Stochastic programming is concerned with decision making under uncertainty, seeking an optimal policy with respect to a set of possible future scenarios. This paper looks at multistage decision problems where the uncertainty is revealed over time. First, decisions are made with respect to all possible future scenarios. Secondly, after observing the random variables, a set of scenario specific decisions is taken. Our goal is to develop algorithms that can be used as a back-end solver for high-level modeling languages. In this paper we propose a scenario decomposition method to solve multistage stochastic combinatorial decision problems recursively. Our approach is applicable to general problem structures, utilizes standard solving technology and is highly parallelizable. We provide experimental results to show how it efficiently solves benchmarks with hundreds of scenarios.
Fast Electrical Demand Optimization Under Real-Time Pricing
He, Shan (Monash University) | Wallace, Mark (Monash University) | Wilson, Campbell (Monash University) | Liebman, Ariel (Monash University)
The introduction of smart meters has motivated the electricity industry to manage electrical demand, using dynamic pricing schemes such as real-time pricing. The overall aim of demand management is to minimize electricity generation and distribution costs while meeting the demands and preferences of consumers. However, rapidly scheduling consumption of large groups of households is a challenge. In this paper, we present a highly scalable approach to find the optimal consumption levels for households in an iterative and distributed manner. The complexity of this approach is independent of the number of households, which allows it to be applied to problems with large groups of households. Moreover, the intermediate results of this approach can be used by smart meters to schedule tasks with a simple randomized method.
Fast Electrical Demand Optimization Under Real-Time Pricing
He, Shan (Monash University) | Wallace, Mark (Monash University) | Wilson, Campbell (Monash University) | Liebman, Ariel (Monash University)
Real-time pricing (RTP) is an effective scheme for reducing peak demand, but it can lead to load synchronization , where a large amount of consumption is shifted from a typical peak time to a non-peak time, without reducing the peak demand. To address this issue, this paper presents a demand management method under RTP for the smart grid, that solves a large-scale of energy scheduling problem for households in an area. This is a distributed optimization method that finds the optimal consumption levels to minimize the total electricity cost while meeting the demands and preferences of households. Moreover, we propose to compute the probability distributions of start times for tasks, with which smart meters can quickly schedule tasks in practice, while matching the aggregate demand to the optimal consumption levels. The complexity of the optimization method is independent of the number households, which allows it to be applied to problems with realistic scales.