Goto

Collaborating Authors

 Wallace, Eric


Trading Inference-Time Compute for Adversarial Robustness

arXiv.org Artificial Intelligence

We conduct experiments on the impact of increasing inference-time compute in reasoning models (specifically OpenAI o1-preview and o1-mini) on their robustness to adversarial attacks. We find that across a variety of attacks, increased inference-time compute leads to improved robustness. In many cases (with important exceptions), the fraction of model samples where the attack succeeds tends to zero as the amount of test-time compute grows. We perform no adversarial training for the tasks we study, and we increase inference-time compute by simply allowing the models to spend more compute on reasoning, independently of the form of attack. Our results suggest that inference-time compute has the potential to improve adversarial robustness for Large Language Models. We also explore new attacks directed at reasoning models, as well as settings where inference-time compute does not improve reliability, and speculate on the reasons for these as well as ways to address them.


Deliberative Alignment: Reasoning Enables Safer Language Models

arXiv.org Artificial Intelligence

Modern Large Language Models (LLMs) are safety trained using Supervised Fine Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF) to mitigate harmful, undesirable, or otherwise disallowed outputs [2]-[4]. Despite ongoing advances in these methods, today's models still exhibit safety shortcomings: they can be tricked into revealing harmful content, often refuse legitimate requests, and remain vulnerable to jailbreak attacks [5]-[8]. We argue that many of these failures arise from two limitations in modern safety training. First, LLMs must respond instantly to user requests using a fixed amount of compute, without deliberation even for complex safety scenarios. Second, LLMs must infer underlying safety standards indirectly from large sets of labeled examples, rather than directly learning the safety specifications that govern them. This reliance on implicit, pattern-based learning leads to poor data efficiency and makes it challenging for models to generalize when facing unfamiliar scenarios or adversarial attacks. We propose deliberative alignment, a training approach that teaches LLMs to explicitly reason through safety specifications before producing an answer. By applying this method to OpenAI's o-series models [1], we enable them to use chain-of-thought (CoT) reasoning to examine user prompts, identify relevant policy guidelines, and generate safer responses (e.g., Figure 1).


OpenAI o1 System Card

arXiv.org Artificial Intelligence

The o1 model series is trained with large-scale reinforcement learning to reason using chain of thought. These advanced reasoning capabilities provide new avenues for improving the safety and robustness of our models. In particular, our models can reason about our safety policies in context when responding to potentially unsafe prompts, through deliberative alignment. This leads to state-of-the-art performance on certain benchmarks for risks such as generating illicit advice, choosing stereotyped responses, and succumbing to known jailbreaks. Training models to incorporate a chain of thought before answering has the potential to unlock substantial benefits, while also increasing potential risks that stem from heightened intelligence. Our results underscore the need for building robust alignment methods, extensively stress-testing their efficacy, and maintaining meticulous risk management protocols. This report outlines the safety work carried out for the OpenAI o1 and OpenAI o1-mini models, including safety evaluations, external red teaming, and Preparedness Framework evaluations.


Predicting Emergent Capabilities by Finetuning

arXiv.org Artificial Intelligence

A fundamental open challenge in modern LLM scaling is the lack of understanding around emergent capabilities. In particular, language model pretraining loss is known to be highly predictable as a function of compute. However, downstream capabilities are far less predictable -- sometimes even exhibiting emergent jumps -- which makes it challenging to anticipate the capabilities of future models. In this work, we first pose the task of emergence prediction: given access to current LLMs that have random few-shot accuracy on a task, can we predict whether future models (GPT-N+1) will have non-trivial accuracy on that task? We then discover a simple insight for this problem: finetuning LLMs on a given task can shift the point in scaling at which emergence occurs towards less capable models. To operationalize this insight, we can finetune LLMs with varying amounts of data and fit a parametric function that predicts when emergence will occur (i.e., "emergence laws"). We validate this approach using four standard NLP benchmarks where large-scale open-source LLMs already demonstrate emergence (MMLU, GSM8K, CommonsenseQA, and CoLA). Using only small-scale LLMs, we find that, in some cases, we can accurately predict whether models trained with up to 4x more compute have emerged. Finally, we present a case study of two realistic uses for emergence prediction.


GPT-4o System Card

arXiv.org Artificial Intelligence

GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video, and generates any combination of text, audio, and image outputs. It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network. GPT-4o can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time in conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50\% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models. In line with our commitment to building AI safely and consistent with our voluntary commitments to the White House, we are sharing the GPT-4o System Card, which includes our Preparedness Framework evaluations. In this System Card, we provide a detailed look at GPT-4o's capabilities, limitations, and safety evaluations across multiple categories, focusing on speech-to-speech while also evaluating text and image capabilities, and measures we've implemented to ensure the model is safe and aligned. We also include third-party assessments on dangerous capabilities, as well as discussion of potential societal impacts of GPT-4o's text and vision capabilities.


Covert Malicious Finetuning: Challenges in Safeguarding LLM Adaptation

arXiv.org Artificial Intelligence

Black-box finetuning is an emerging interface for adapting state-of-the-art language models to user needs. However, such access may also let malicious actors undermine model safety. To demonstrate the challenge of defending finetuning interfaces, we introduce covert malicious finetuning, a method to compromise model safety via finetuning while evading detection. Our method constructs a malicious dataset where every individual datapoint appears innocuous, but finetuning on the dataset teaches the model to respond to encoded harmful requests with encoded harmful responses. Applied to GPT-4, our method produces a finetuned model that acts on harmful instructions 99% of the time and avoids detection by defense mechanisms such as dataset inspection, safety evaluations, and input/output classifiers. Our findings question whether black-box finetuning access can be secured against sophisticated adversaries.


Unfamiliar Finetuning Examples Control How Language Models Hallucinate

arXiv.org Artificial Intelligence

Large language models are known to hallucinate when faced with unfamiliar queries, but the underlying mechanism that govern how models hallucinate are not yet fully understood. In this work, we find that unfamiliar examples in the models' finetuning data -- those that introduce concepts beyond the base model's scope of knowledge -- are crucial in shaping these errors. In particular, we find that an LLM's hallucinated predictions tend to mirror the responses associated with its unfamiliar finetuning examples. This suggests that by modifying how unfamiliar finetuning examples are supervised, we can influence a model's responses to unfamiliar queries (e.g., say ``I don't know''). We empirically validate this observation in a series of controlled experiments involving SFT, RL, and reward model finetuning on TriviaQA and MMLU. Our work further investigates RL finetuning strategies for improving the factuality of long-form model generations. We find that, while hallucinations from the reward model can significantly undermine the effectiveness of RL factuality finetuning, strategically controlling how reward models hallucinate can minimize these negative effects. Leveraging our previous observations on controlling hallucinations, we propose an approach for learning more reliable reward models, and show that they improve the efficacy of RL factuality finetuning in long-form biography and book/movie plot generation tasks.


The Instruction Hierarchy: Training LLMs to Prioritize Privileged Instructions

arXiv.org Artificial Intelligence

Today's LLMs are susceptible to prompt injections, jailbreaks, and other attacks that allow adversaries to overwrite a model's original instructions with their own malicious prompts. In this work, we argue that one of the primary vulnerabilities underlying these attacks is that LLMs often consider system prompts (e.g., text from an application developer) to be the same priority as text from untrusted users and third parties. To address this, we propose an instruction hierarchy that explicitly defines how models should behave when instructions of different priorities conflict. We then propose an automated data generation method to demonstrate this hierarchical instruction following behavior, which teaches LLMs to selectively ignore lower-privileged instructions. We apply this method to LLMs, showing that it drastically increases robustness--even for attack types not seen during training--while imposing minimal degradations on standard capabilities.


Scalable Extraction of Training Data from (Production) Language Models

arXiv.org Artificial Intelligence

This paper studies extractable memorization: training data that an adversary can efficiently extract by querying a machine learning model without prior knowledge of the training dataset. We show an adversary can extract gigabytes of training data from open-source language models like Pythia or GPT-Neo, semi-open models like LLaMA or Falcon, and closed models like ChatGPT. Existing techniques from the literature suffice to attack unaligned models; in order to attack the aligned ChatGPT, we develop a new divergence attack that causes the model to diverge from its chatbot-style generations and emit training data at a rate 150x higher than when behaving properly. Our methods show practical attacks can recover far more data than previously thought, and reveal that current alignment techniques do not eliminate memorization.


Privacy Side Channels in Machine Learning Systems

arXiv.org Artificial Intelligence

Most current approaches for protecting privacy in machine learning (ML) assume that models exist in a vacuum, when in reality, ML models are part of larger systems that include components for training data filtering, output monitoring, and more. In this work, we introduce privacy side channels: attacks that exploit these system-level components to extract private information at far higher rates than is otherwise possible for standalone models. We propose four categories of side channels that span the entire ML lifecycle (training data filtering, input preprocessing, output post-processing, and query filtering) and allow for either enhanced membership inference attacks or even novel threats such as extracting users' test queries. For example, we show that deduplicating training data before applying differentially-private training creates a side-channel that completely invalidates any provable privacy guarantees. Moreover, we show that systems which block language models from regenerating training data can be exploited to allow exact reconstruction of private keys contained in the training set -- even if the model did not memorize these keys. Taken together, our results demonstrate the need for a holistic, end-to-end privacy analysis of machine learning.