Goto

Collaborating Authors

 Walker, Bruce N.


Do Looks Matter? Exploring Functional and Aesthetic Design Preferences for a Robotic Guide Dog

arXiv.org Artificial Intelligence

Dog guides offer an effective mobility solution for blind or visually impaired (BVI) individuals, but conventional dog guides have limitations including the need for care, potential distractions, societal prejudice, high costs, and limited availability. To address these challenges, we seek to develop a robot dog guide capable of performing the tasks of a conventional dog guide, enhanced with additional features. In this work, we focus on design research to identify functional and aesthetic design concepts to implement into a quadrupedal robot. The aesthetic design remains relevant even for BVI users due to their sensitivity toward societal perceptions and the need for smooth integration into society. We collected data through interviews and surveys to answer specific design questions pertaining to the appearance, texture, features, and method of controlling and communicating with the robot. Our study identified essential and preferred features for a future robot dog guide, which are supported by relevant statistics aligning with each suggestion. These findings will inform the future development of user-centered designs to effectively meet the needs of BVI individuals.


Understanding Expectations for a Robotic Guide Dog for Visually Impaired People

arXiv.org Artificial Intelligence

Robotic guide dogs hold significant potential to enhance the autonomy and mobility of blind or visually impaired (BVI) individuals by offering universal assistance over unstructured terrains at affordable costs. However, the design of robotic guide dogs remains underexplored, particularly in systematic aspects such as gait controllers, navigation behaviors, interaction methods, and verbal explanations. Our study addresses this gap by conducting user studies with 18 BVI participants, comprising 15 cane users and three guide dog users. Participants interacted with a quadrupedal robot and provided both quantitative and qualitative feedback. Our study revealed several design implications, such as a preference for a learning-based controller and a rigid handle, gradual turns with asymmetric speeds, semantic communication methods, and explainability. The study also highlighted the importance of customization to support users with diverse backgrounds and preferences, along with practical concerns such as battery life, maintenance, and weather issues. These findings offer valuable insights and design implications for future research and development of robotic guide dogs.