Wake, Naoki
Constraint-aware Policy for Compliant Manipulation
Saito, Daichi, Sasabuchi, Kazuhiro, Wake, Naoki, Kanehira, Atsushi, Takamatsu, Jun, Koike, Hideki, Ikeuchi, Katsushi
Robot manipulation in a physically-constrained environment requires compliant manipulation. Compliant manipulation is a manipulation skill to adjust hand motion based on the force imposed by the environment. Recently, reinforcement learning (RL) has been applied to solve household operations involving compliant manipulation. However, previous RL methods have primarily focused on designing a policy for a specific operation that limits their applicability and requires separate training for every new operation. We propose a constraint-aware policy that is applicable to various unseen manipulations by grouping several manipulations together based on the type of physical constraint involved. The type of physical constraint determines the characteristic of the imposed force direction; thus, a generalized policy is trained in the environment and reward designed on the basis of this characteristic. This paper focuses on two types of physical constraints: prismatic and revolute joints. Experiments demonstrated that the same policy could successfully execute various compliant-manipulation operations, both in the simulation and reality. We believe this study is the first step toward realizing a generalized household-robot.
ChatGPT Empowered Long-Step Robot Control in Various Environments: A Case Application
Wake, Naoki, Kanehira, Atsushi, Sasabuchi, Kazuhiro, Takamatsu, Jun, Ikeuchi, Katsushi
This paper demonstrates how OpenAI's ChatGPT can be used in a few-shot setting to convert natural language instructions into a sequence of executable robot actions. The paper proposes easy-to-customize input prompts for ChatGPT that meet common requirements in practical applications, such as easy integration with robot execution systems and applicability to various environments while minimizing the impact of ChatGPT's token limit. The prompts encourage ChatGPT to output a sequence of predefined robot actions, represent the operating environment in a formalized style, and infer the updated state of the operating environment. Experiments confirmed that the proposed prompts enable ChatGPT to act according to requirements in various environments, and users can adjust ChatGPT's output with natural language feedback for safe and robust operation. The proposed prompts and source code are open-source and publicly available at https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts
Text-driven object affordance for guiding grasp-type recognition in multimodal robot teaching
Wake, Naoki, Saito, Daichi, Sasabuchi, Kazuhiro, Koike, Hideki, Ikeuchi, Katsushi
This study investigates how text-driven object affordance, which provides prior knowledge about grasp types for each object, affects image-based grasp-type recognition in robot teaching. The researchers created labeled datasets of first-person hand images to examine the impact of object affordance on recognition performance. They evaluated scenarios with real and illusory objects, considering mixed reality teaching conditions where visual object information may be limited. The results demonstrate that object affordance improves image-based recognition by filtering out unlikely grasp types and emphasizing likely ones. The effectiveness of object affordance was more pronounced when there was a stronger bias towards specific grasp types for each object. These findings highlight the significance of object affordance in multimodal robot teaching, regardless of whether real objects are present in the images. Sample code is available on https://github.com/microsoft/arr-grasp-type-recognition.
GPT Models Meet Robotic Applications: Co-Speech Gesturing Chat System
Wake, Naoki, Kanehira, Atsushi, Sasabuchi, Kazuhiro, Takamatsu, Jun, Ikeuchi, Katsushi
This technical paper introduces a chatting robot system that utilizes recent advancements in large-scale language models (LLMs) such as GPT-3 and ChatGPT (Fig.1). The system is integrated with a co-speech gesture generation system, which selects appropriate gestures based on the conceptual meaning of speech. Our motivation is to explore ways of utilizing the recent progress in LLMs for practical robotic applications, which benefits the development of both chatbots and LLMs. Specifically, it enables the development of highly responsive chatbot systems by leveraging LLMs and adds visual effects to the user interface of LLMs as an additional value. The source code for the system is available on GitHub for our in-house robot and GitHub for Toyota HSR.
Interactive Task Encoding System for Learning-from-Observation
Wake, Naoki, Kanehira, Atsushi, Sasabuchi, Kazuhiro, Takamatsu, Jun, Ikeuchi, Katsushi
We present the Interactive Task Encoding System (ITES) for teaching robots to perform manipulative tasks. ITES is designed as an input system for the Learning-from-Observation (LfO) framework, which enables household robots to be programmed using few-shot human demonstrations without the need for coding. In contrast to previous LfO systems that rely solely on visual demonstrations, ITES leverages both verbal instructions and interaction to enhance recognition robustness, thus enabling multimodal LfO. ITES identifies tasks from verbal instructions and extracts parameters from visual demonstrations. Meanwhile, the recognition result was reviewed by the user for interactive correction. Evaluations conducted on a real robot demonstrate the successful teaching of multiple operations for several scenarios, suggesting the usefulness of ITES for multimodal LfO. The source code is available at https://github.com/microsoft/symbolic-robot-teaching-interface.
Applying Learning-from-observation to household service robots: three common-sense formulation
Ikeuchi, Katsushi, Takamatsu, Jun, Sasabuchi, Kazuhiro, Wake, Naoki, Kanehiro, Atsushi
Utilizing a robot in a new application requires the robot to be programmed at each time. To reduce such programmings efforts, we have been developing ``Learning-from-observation (LfO)'' that automatically generates robot programs by observing human demonstrations. One of the main issues with introducing this LfO system into the domain of household tasks is the cluttered environments, which cause difficulty in determining which elements are important for task execution when observing demonstrations. To overcome this issue, it is necessary for the system to have common sense shared with the human demonstrator. This paper addresses three relationships that LfO in the household domain should focus on when observing demonstrations and proposes representations to describe the common sense used by the demonstrator for optimal execution of task sequences. Specifically, the paper proposes to use labanotation to describe the postures between the environment and the robot, contact-webs to describe the grasping methods between the robot and the tool, and physical and semantic constraints to describe the motions between the tool and the environment. Then, based on these representations, the paper formulates task models, machine-independent robot programs, that indicate what to do and how to do. Third, the paper explains the task encoder to obtain task models and task decoder to execute the task models on the robot hardware. Finally, this paper presents how the system actually works through several example scenes.
Task-sequencing Simulator: Integrated Machine Learning to Execution Simulation for Robot Manipulation
Sasabuchi, Kazuhiro, Saito, Daichi, Kanehira, Atsushi, Wake, Naoki, Takamatsu, Jun, Ikeuchi, Katsushi
A task-sequencing simulator in robotics manipulation to integrate simulation-for-learning and simulation-for-execution is introduced. Unlike existing machine-learning simulation where a non-decomposed simulation is used to simulate a training scenario, the task-sequencing simulator runs a composed simulation using building blocks. This way, the simulation-for-learning is structured similarly to a multi-step simulation-for-execution. To compose both learning and execution scenarios, a unified trainable-and-composable description of blocks called a concept model is proposed and used. Using the simulator design and concept models, a reusable simulator for learning different tasks, a common-ground system for learning-to-execution, simulation-to-real is achieved and shown.
Learning-from-Observation System Considering Hardware-Level Reusability
Takamatsu, Jun, Sasabuchi, Kazuhiro, Wake, Naoki, Kanehira, Atsushi, Ikeuchi, Katsushi
Robot developers develop various types of robots for satisfying users' various demands. Users' demands are related to their backgrounds and robots suitable for users may vary. If a certain developer would offer a robot that is different from the usual to a user, the robot-specific software has to be changed. On the other hand, robot-software developers would like to reuse their developed software as much as possible to reduce their efforts. We propose the system design considering hardware-level reusability. For this purpose, we begin with the learning-from-observation framework. This framework represents a target task in robot-agnostic representation, and thus the represented task description can be shared with various robots. When executing the task, it is necessary to convert the robot-agnostic description into commands of a target robot. To increase the reusability, first, we implement the skill library, robot motion primitives, only considering a robot hand and we regarded that a robot was just a carrier to move the hand on the target trajectory. The skill library is reusable if we would like to the same robot hand. Second, we employ the generic IK solver to quickly swap a robot. We verify the hardware-level reusability by applying two task descriptions to two different robots, Nextage and Fetch.