Not enough data to create a plot.
Try a different view from the menu above.
Wagner, Philipp
Sample-Efficient Bayesian Transfer Learning for Online Machine Parameter Optimization
Wagner, Philipp, Nagel, Tobias, Leube, Philipp, Huber, Marco F.
Correctly setting the parameters of a production machine is essential to improve product quality, increase efficiency, and reduce production costs while also supporting sustainability goals. Identifying optimal parameters involves an iterative process of producing an object and evaluating its quality. Minimizing the number of iterations is, therefore, desirable to reduce the costs associated with unsuccessful attempts. This work introduces a method to optimize the machine parameters in the system itself using a Bayesian optimization algorithm. By leveraging existing machine data, we use a transfer learning approach in order to identify an optimum with minimal iterations, resulting in a cost-effective transfer learning algorithm. We validate our approach on a laser machine for cutting sheet metal in the real world.
Model Reporting for Certifiable AI: A Proposal from Merging EU Regulation into AI Development
Brajovic, Danilo, Renner, Niclas, Goebels, Vincent Philipp, Wagner, Philipp, Fresz, Benjamin, Biller, Martin, Klaeb, Mara, Kutz, Janika, Neuhuettler, Jens, Huber, Marco F.
Despite large progress in Explainable and Safe AI, practitioners suffer from a lack of regulation and standards for AI safety. In this work we merge recent regulation efforts by the European Union and first proposals for AI guidelines with recent trends in research: data and model cards. We propose the use of standardized cards to document AI applications throughout the development process. Our main contribution is the introduction of use-case and operation cards, along with updates for data and model cards to cope with regulatory requirements. We reference both recent research as well as the source of the regulation in our cards and provide references to additional support material and toolboxes whenever possible. The goal is to design cards that help practitioners develop safe AI systems throughout the development process, while enabling efficient third-party auditing of AI applications, being easy to understand, and building trust in the system. Our work incorporates insights from interviews with certification experts as well as developers and individuals working with the developed AI applications.
Kalman Bayesian Neural Networks for Closed-form Online Learning
Wagner, Philipp, Wu, Xinyang, Huber, Marco F.
Compared to point estimates calculated by standard neural networks, Bayesian neural networks (BNN) provide probability distributions over the output predictions and model parameters, i.e., the weights. Training the weight distribution of a BNN, however, is more involved due to the intractability of the underlying Bayesian inference problem and thus, requires efficient approximations. In this paper, we propose a novel approach for BNN learning via closed-form Bayesian inference. For this purpose, the calculation of the predictive distribution of the output and the update of the weight distribution are treated as Bayesian filtering and smoothing problems, where the weights are modeled as Gaussian random variables. This allows closed-form expressions for training the network's parameters in a sequential/online fashion without gradient descent. We demonstrate our method on several UCI datasets and compare it to the state of the art.