Goto

Collaborating Authors

 Vullikanti, Anil


Spatial-Temporal Networks for Antibiogram Pattern Prediction

arXiv.org Artificial Intelligence

An antibiogram is a periodic summary of antibiotic resistance results of organisms from infected patients to selected antimicrobial drugs. Antibiograms help clinicians to understand regional resistance rates and select appropriate antibiotics in prescriptions. In practice, significant combinations of antibiotic resistance may appear in different antibiograms, forming antibiogram patterns. Such patterns may imply the prevalence of some infectious diseases in certain regions. Thus it is of crucial importance to monitor antibiotic resistance trends and track the spread of multi-drug resistant organisms. In this paper, we propose a novel problem of antibiogram pattern prediction that aims to predict which patterns will appear in the future. Despite its importance, tackling this problem encounters a series of challenges and has not yet been explored in the literature. First of all, antibiogram patterns are not i.i.d as they may have strong relations with each other due to genomic similarities of the underlying organisms. Second, antibiogram patterns are often temporally dependent on the ones that are previously detected. Furthermore, the spread of antibiotic resistance can be significantly influenced by nearby or similar regions. To address the above challenges, we propose a novel Spatial-Temporal Antibiogram Pattern Prediction framework, STAPP, that can effectively leverage the pattern correlations and exploit the temporal and spatial information. We conduct extensive experiments on a real-world dataset with antibiogram reports of patients from 1999 to 2012 for 203 cities in the United States. The experimental results show the superiority of STAPP against several competitive baselines.


High-resolution synthetic residential energy use profiles for the United States

arXiv.org Artificial Intelligence

Efficient energy consumption is crucial for achieving sustainable energy goals in the era of climate change and grid modernization. Thus, it is vital to understand how energy is consumed at finer resolutions such as household in order to plan demand-response events or analyze impacts of weather, electricity prices, electric vehicles, solar, and occupancy schedules on energy consumption. However, availability and access to detailed energy-use data, which would enable detailed studies, has been rare. In this paper, we release a unique, large-scale, digital-twin of residential energy-use dataset for the residential sector across the contiguous United States covering millions of households. The data comprise of hourly energy use profiles for synthetic households, disaggregated into Thermostatically Controlled Loads (TCL) and appliance use. The underlying framework is constructed using a bottom-up approach. Diverse open-source surveys and first principles models are used for end-use modeling. Extensive validation of the synthetic dataset has been conducted through comparisons with reported energy-use data. We present a detailed, open, high resolution, residential energy-use dataset for the United States.


Differentially Private Densest Subgraph Detection

arXiv.org Artificial Intelligence

Densest subgraph detection is a fundamental graph mining problem, with a large number of applications. There has been a lot of work on efficient algorithms for finding the densest subgraph in massive networks. However, in many domains, the network is private, and returning a densest subgraph can reveal information about the network. Differential privacy is a powerful framework to handle such settings. We study the densest subgraph problem in the edge privacy model, in which the edges of the graph are private. We present the first sequential and parallel differentially private algorithms for this problem. We show that our algorithms have an additive approximation guarantee. We evaluate our algorithms on a large number of real-world networks, and observe a good privacy-accuracy tradeoff when the network has high density.


Mapping Network States Using Connectivity Queries

arXiv.org Artificial Intelligence

Can we infer all the failed components of an infrastructure network, given a sample of reachable nodes from supply nodes? One of the most critical post-disruption processes after a natural disaster is to quickly determine the damage or failure states of critical infrastructure components. However, this is non-trivial, considering that often only a fraction of components may be accessible or observable after a disruptive event. Past work has looked into inferring failed components given point probes, i.e. with a direct sample of failed components. In contrast, we study the harder problem of inferring failed components given partial information of some `serviceable' reachable nodes and a small sample of point probes, being the first often more practical to obtain. We formulate this novel problem using the Minimum Description Length (MDL) principle, and then present a greedy algorithm that minimizes MDL cost effectively. We evaluate our algorithm on domain-expert simulations of real networks in the aftermath of an earthquake. Our algorithm successfully identify failed components, especially the critical ones affecting the overall system performance.


Models for COVID-19 Pandemic: A Comparative Analysis

arXiv.org Artificial Intelligence

COVID-19 pandemic represents an unprecedented global health crisis in the last 100 years. Its economic, social and health impact continues to grow and is likely to end up as one of the worst global disasters since the 1918 pandemic and the World Wars. Mathematical models have played an important role in the ongoing crisis; they have been used to inform public policies and have been instrumental in many of the social distancing measures that were instituted worldwide. In this article we review some of the important mathematical models used to support the ongoing planning and response efforts. These models differ in their use, their mathematical form and their scope.


Efficient Algorithms for Generating Provably Near-Optimal Cluster Descriptors for Explainability

arXiv.org Artificial Intelligence

As AI and machine learning (ML) methods become pervasive across all domains from health to urban planning, there is an increasing need to make the results of such methods more interpretable. Providing such explanations has now become a legal requirement in some countries [10]. Many researchers are investigating this topic under supervised learning, particularly for methods in deep learning (see e.g., [21, 22]). Clustering is a commonly used unsupervised ML technique (see e.g., [2, 3, 9, 27, 13, 31]). It is routinely performed on diverse kinds of datasets, sometimes after constructing network abstractions, and optimizing complex objective functions (e.g., modularity [2]). This can often make clusters hard to interpret especially in a post-hoc analysis. Thus, a natural question is whether it is possible to explain a given set of clusters, using additional attributes which, crucially, were not used in the clustering procedure. One motivation for our work is to understand the threat levels of pathogens for which genomic sequences are available.


Graph Scan Statistics With Uncertainty

AAAI Conferences

Scan statistics is one of the most popular approaches for anomaly detection in spatial and network data. In practice, there are numerous sources of uncertainty in the observed data. However, most prior works have overlooked such uncertainty, which can affect the accuracy and inferences of such methods. In this paper, we develop the first systematic approach to incorporating uncertainty in scan statistics. We study two formulations for robust scan statistics, one based on the sample average approximation and the other using a max-min objective. We show that uncertainty significantly increases the computational complexity of these problems. Rigorous algorithms and efficient heuristics for both formulations are developed with justification of theoretical bounds. We evaluate our proposed methods on synthetic and real datasets, and we observe that our methods give significant improvement in the detection power as well as optimization objective, relative to a baseline.


Temporal Vaccination Games under Resource Constraints

AAAI Conferences

The decision to take vaccinations and other protective interventions for avoiding an infection is a natural game-theoretic setting. Most of the work on vaccination games has focused on decisions at the start of an epidemic. However, a lot of people defer their vaccination decisions, in practice. For example, in the case of the seasonal flu, vaccination rates gradually increase, as the epidemic rate increases. This motivates the study of temporal vaccination games, in which vaccination decisions can be made more than once. An important issue in the context of temporal decisions is that of resource limitations, which may arise due to production and distribution constraints. While there has been some work on temporal vaccination games, resource constraints have not been considered. In this paper, we study temporal vaccination games for epidemics in the SI (susceptible-infectious) model, with resource constraints in the form of a repeated game in complex social networks, with budgets on the number of vaccines that can be taken at any time. We find that the resource constraints and the vaccination and infection costs have a significant impact on the structure of Nash equilibria (NE). In general, the budget constraints can cause NE to become very inefficient, and finding efficient NE as well as the social optimum are NP-hard problems. We develop algorithms for finding NE and approximating the social optimum. We evaluate our results using simulations on different kinds of networks.