Goto

Collaborating Authors

 Vuffray, Marc


Discrete distributions are learnable from metastable samples

arXiv.org Machine Learning

Physically motivated stochastic dynamics are often used to sample from high-dimensional distributions. However such dynamics often get stuck in specific regions of their state space and mix very slowly to the desired stationary state. This causes such systems to approximately sample from a metastable distribution which is usually quite different from the desired, stationary distribution of the dynamic. We rigorously show that, in the case of multi-variable discrete distributions, the true model describing the stationary distribution can be recovered from samples produced from a metastable distribution under minimal assumptions about the system. This follows from a fundamental observation that the single-variable conditionals of metastable distributions that satisfy a strong metastability condition are on average close to those of the stationary distribution. This holds even when the metastable distribution differs considerably from the true model in terms of global metrics like Kullback-Leibler divergence or total variation distance. This property allows us to learn the true model using a conditional likelihood based estimator, even when the samples come from a metastable distribution concentrated in a small region of the state space. Explicit examples of such metastable states can be constructed from regions that effectively bottleneck the probability flow and cause poor mixing of the Markov chain. For specific cases of binary pairwise undirected graphical models (i.e. Ising models), we extend our results to further rigorously show that data coming from metastable states can be used to learn the parameters of the energy function and recover the structure of the model.


Learning Energy-Based Representations of Quantum Many-Body States

arXiv.org Artificial Intelligence

Efficient representation of quantum many-body states on classical computers is a problem of enormous practical interest. An ideal representation of a quantum state combines a succinct characterization informed by the system's structure and symmetries, along with the ability to predict the physical observables of interest. A number of machine learning approaches have been recently used to construct such classical representations [1-6] which enable predictions of observables [7] and account for physical symmetries [8]. However, the structure of a quantum state gets typically lost unless a specialized ansatz is employed based on prior knowledge of the system [9-12]. Moreover, most such approaches give no information about what states are easier to learn in comparison to others. Here, we propose a new generative energy-based representation of quantum many-body states derived from Gibbs distributions used for modeling the thermal states of classical spin systems. Based on the prior information on a family of quantum states, the energy function can be specified by a small number of parameters using an explicit low-degree polynomial or a generic parametric family such as neural nets, and can naturally include the known symmetries of the system. Our results show that such a representation can be efficiently learned from data using exact algorithms in a form that enables the prediction of expectation values of physical observables. Importantly, the structure of the learned energy function provides a natural explanation for the hardness of learning for a given class of quantum states.


Exponential Reduction in Sample Complexity with Learning of Ising Model Dynamics

arXiv.org Machine Learning

The usual setting for learning the structure and parameters of a graphical model assumes the availability of independent samples produced from the corresponding multivariate probability distribution. However, for many models the mixing time of the respective Markov chain can be very large and i.i.d. samples may not be obtained. We study the problem of reconstructing binary graphical models from correlated samples produced by a dynamical process, which is natural in many applications. We analyze the sample complexity of two estimators that are based on the interaction screening objective and the conditional likelihood loss. We observe that for samples coming from a dynamical process far from equilibrium, the sample complexity reduces exponentially compared to a dynamical process that mixes quickly.


Learning Continuous Exponential Families Beyond Gaussian

arXiv.org Machine Learning

We address the problem of learning of continuous exponential family distributions with unbounded support. While a lot of progress has been made on learning of Gaussian graphical models, we are still lacking scalable algorithms for reconstructing general continuous exponential families modeling higher-order moments of the data beyond the mean and the covariance. Here, we introduce a computationally efficient method for learning continuous graphical models based on the Interaction Screening approach. Through a series of numerical experiments, we show that our estimator maintains similar requirements in terms of accuracy and sample complexity compared to alternative approaches such as maximization of conditional likelihood, while considerably improving upon the algorithm's run-time.


Learning of Discrete Graphical Models with Neural Networks

arXiv.org Machine Learning

Graphical models are widely used in science to represent joint probability distributions with an underlying conditional dependence structure. The inverse problem of learning a discrete graphical model given i.i.d samples from its joint distribution can be solved with near-optimal sample complexity using a convex optimization method known as Generalized Regularized Interaction Screening Estimator (GRISE). But the computational cost of GRISE becomes prohibitive when the energy function of the true graphical model has higher order terms. We introduce NN-GRISE, a neural net based algorithm for graphical model learning, to tackle this limitation of GRISE. We use neural nets as function approximators in an interaction screening objective function. The optimization of this objective then produces a neural-net representation for the conditionals of the graphical model. NN-GRISE algorithm is seen to be a better alternative to GRISE when the energy function of the true model has a high order with a high degree of symmetry. In these cases, NN-GRISE is able to find the correct parsimonious representation for the conditionals without being fed any prior information about the true model. NN-GRISE can also be used to learn the underlying structure of the true model with some simple modifications to its training procedure. In addition, we also show a variant of NN-GRISE that can be used to learn a neural net representation for the full energy function of the true model.


Efficient Learning of Discrete Graphical Models

arXiv.org Machine Learning

Graphical models are useful tools for describing structured high-dimensional probability distributions. Development of efficient algorithms for learning graphical models with least amount of data remains an active research topic. Reconstruction of graphical models that describe the statistics of discrete variables is a particularly challenging problem, for which the maximum likelihood approach is intractable. In this work, we provide the first sample-efficient method based on the Interaction Screening framework that allows one to provably learn fully general discrete factor models with node-specific discrete alphabets and multi-body interactions, specified in an arbitrary basis. We identify a single condition related to model parametrization that leads to rigorous guarantees on the recovery of model structure and parameters in any error norm, and is readily verifiable for a large class of models. Importantly, our bounds make explicit distinction between parameters that are proper to the model and priors used as an input to the algorithm. Finally, we show that the Interaction Screening framework includes all models previously considered in the literature as special cases, and for which our analysis shows a systematic improvement in sample complexity.


Optimal structure and parameter learning of Ising models

arXiv.org Machine Learning

Reconstruction of structure and parameters of an Ising model from binary samples is a problem of practical importance in a variety of disciplines, ranging from statistical physics and computational biology to image processing and machine learning. The focus of the research community shifted towards developing universal reconstruction algorithms which are both computationally efficient and require the minimal amount of expensive data. We introduce a new method, Interaction Screening, which accurately estimates the model parameters using local optimization problems. The algorithm provably achieves perfect graph structure recovery with an information-theoretically optimal number of samples, notably in the low-temperature regime which is known to be the hardest for learning. The efficacy of Interaction Screening is assessed through extensive numerical tests on synthetic Ising models of various topologies with different types of interactions, as well as on a real data produced by a D-Wave quantum computer. This study shows that the Interaction Screening method is an exact, tractable and optimal technique universally solving the inverse Ising problem.


Online Learning of Power Transmission Dynamics

arXiv.org Machine Learning

We consider the problem of reconstructing the dynamic state matrix of transmission power grids from time-stamped PMU measurements in the regime of ambient fluctuations. Using a maximum likelihood based approach, we construct a family of convex estimators that adapt to the structure of the problem depending on the available prior information. The proposed method is fully data-driven and does not assume any knowledge of system parameters. It can be implemented in near real-time and requires a small amount of data. Our learning algorithms can be used for model validation and calibration, and can also be applied to related problems of system stability, detection of forced oscillations, generation re-dispatch, as well as to the estimation of the system state.


Interaction Screening: Efficient and Sample-Optimal Learning of Ising Models

Neural Information Processing Systems

We consider the problem of learning the underlying graph of an unknown Ising model on p spins from a collection of i.i.d. samples generated from the model. We suggest a new estimator that is computationally efficient and requires a number of samples that is near-optimal with respect to previously established information theoretic lower-bound. Our statistical estimator has a physical interpretation in terms of "interaction screening". The estimator is consistent and is efficiently implemented using convex optimization. We prove that with appropriate regularization, the estimator recovers the underlying graph using a number of samples that is logarithmic in the system size p and exponential in the maximum coupling-intensity and maximum node-degree.


Interaction Screening: Efficient and Sample-Optimal Learning of Ising Models

arXiv.org Machine Learning

We consider the problem of learning the underlying graph of an unknown Ising model on p spins from a collection of i.i.d. samples generated from the model. We suggest a new estimator that is computationally efficient and requires a number of samples that is near-optimal with respect to previously established information-theoretic lower-bound. Our statistical estimator has a physical interpretation in terms of "interaction screening". The estimator is consistent and is efficiently implemented using convex optimization. We prove that with appropriate regularization, the estimator recovers the underlying graph using a number of samples that is logarithmic in the system size p and exponential in the maximum coupling-intensity and maximum node-degree.