Plotting

 Vorontsov, Anton


Systems and Algorithms for Convolutional Multi-Hybrid Language Models at Scale

arXiv.org Artificial Intelligence

We introduce convolutional multi-hybrid architectures, with a design grounded on two simple observations. First, operators in hybrid models can be tailored to token manipulation tasks such as in-context recall, multi-token recall, and compression, with input-dependent convolutions and attention offering complementary performance. Second, co-designing convolution operators and hardware-aware algorithms enables efficiency gains in regimes where previous alternative architectures struggle to surpass Transformers. At the 40 billion parameter scale, we train end-to-end 1.2 to 2.9 times faster than optimized Transformers, and 1.1 to 1.4 times faster than previous generation hybrids. On H100 GPUs and model width 4096, individual operators in the proposed multi-hybrid StripedHyena 2 architecture achieve two-fold throughput improvement over linear attention and state-space models. Multi-hybrids excel at sequence modeling over byte-tokenized data, as demonstrated by the Evo 2 line of models. We discuss the foundations that enable these results, including architecture design, overlap-add blocked kernels for tensor cores, and dedicated all-to-all and point-to-point context parallelism strategies.


BioNeMo Framework: a modular, high-performance library for AI model development in drug discovery

arXiv.org Artificial Intelligence

Artificial Intelligence models encoding biology and chemistry are opening new routes to high-throughput and high-quality in-silico drug development. However, their training increasingly relies on computational scale, with recent protein language models (pLM) training on hundreds of graphical processing units (GPUs). We introduce the BioNeMo Framework to facilitate the training of computational biology and chemistry AI models across hundreds of GPUs. Its modular design allows the integration of individual components, such as data loaders, into existing workflows and is open to community contributions. We detail technical features of the BioNeMo Framework through use cases such as pLM pre-training and fine-tuning. On 256 NVIDIA A100s, BioNeMo Framework trains a three billion parameter BERT-based pLM on over one trillion tokens in 4.2 days. The BioNeMo Framework is open-source and free for everyone to use.