Voroninski, Vlad
Phase Retrieval Under a Generative Prior
Hand, Paul, Leong, Oscar, Voroninski, Vlad
We introduce a novel deep-learning inspired formulation of the \textit{phase retrieval problem}, which asks to recover a signal $y_0 \in \R^n$ from $m$ quadratic observations, under structural assumptions on the underlying signal. As is common in many imaging problems, previous methodologies have considered natural signals as being sparse with respect to a known basis, resulting in the decision to enforce a generic sparsity prior. However, these methods for phase retrieval have encountered possibly fundamental limitations, as no computationally efficient algorithm for sparse phase retrieval has been proven to succeed with fewer than $O(k^2\log n)$ generic measurements, which is larger than the theoretical optimum of $O(k \log n)$. In this paper, we sidestep this issue by considering a prior that a natural signal is in the range of a generative neural network $G : \R^k \rightarrow \R^n$. We introduce an empirical risk formulation that has favorable global geometry for gradient methods, as soon as $m = O(k)$, under the model of a multilayer fully-connected neural network with random weights. Specifically, we show that there exists a descent direction outside of a small neighborhood around the true $k$-dimensional latent code and a negative multiple thereof. This formulation for structured phase retrieval thus benefits from two effects: generative priors can more tightly represent natural signals than sparsity priors, and this empirical risk formulation can exploit those generative priors at an information theoretically optimal sample complexity, unlike for a sparsity prior. We corroborate these results with experiments showing that exploiting generative models in phase retrieval tasks outperforms both sparse and general phase retrieval methods.
Phase Retrieval Under a Generative Prior
Hand, Paul, Leong, Oscar, Voroninski, Vlad
We introduce a novel deep-learning inspired formulation of the \textit{phase retrieval problem}, which asks to recover a signal $y_0 \in \R^n$ from $m$ quadratic observations, under structural assumptions on the underlying signal. As is common in many imaging problems, previous methodologies have considered natural signals as being sparse with respect to a known basis, resulting in the decision to enforce a generic sparsity prior. However, these methods for phase retrieval have encountered possibly fundamental limitations, as no computationally efficient algorithm for sparse phase retrieval has been proven to succeed with fewer than $O(k^2\log n)$ generic measurements, which is larger than the theoretical optimum of $O(k \log n)$. In this paper, we sidestep this issue by considering a prior that a natural signal is in the range of a generative neural network $G : \R^k \rightarrow \R^n$. We introduce an empirical risk formulation that has favorable global geometry for gradient methods, as soon as $m = O(k)$, under the model of a multilayer fully-connected neural network with random weights. Specifically, we show that there exists a descent direction outside of a small neighborhood around the true $k$-dimensional latent code and a negative multiple thereof. This formulation for structured phase retrieval thus benefits from two effects: generative priors can more tightly represent natural signals than sparsity priors, and this empirical risk formulation can exploit those generative priors at an information theoretically optimal sample complexity, unlike for a sparsity prior. We corroborate these results with experiments showing that exploiting generative models in phase retrieval tasks outperforms both sparse and general phase retrieval methods.
The non-convex Burer-Monteiro approach works on smooth semidefinite programs
Boumal, Nicolas, Voroninski, Vlad, Bandeira, Afonso
Semidefinite programs (SDPs) can be solved in polynomial time by interior point methods, but scalability can be an issue. To address this shortcoming, over a decade ago, Burer and Monteiro proposed to solve SDPs with few equality constraints viarank-restricted, non-convex surrogates. Remarkably, for some applications, localoptimization methods seem to converge to global optima of these non-convex surrogates reliably. Although some theory supports this empirical success, a complete explanation of it remains an open question. In this paper, we consider a class of SDPs which includes applications such as max-cut, community detection in the stochastic block model, robust PCA, phase retrieval and synchronization ofrotations. We show that the low-rank Burer-Monteiro formulation of SDPs in that class almost never has any spurious local optima. This paper was corrected on April 9, 2018. Theorems 2 and 4 had the assumption thatM (1) is a manifold.