Voloshin, Cameron
LTL-Constrained Policy Optimization with Cycle Experience Replay
Shah, Ameesh, Voloshin, Cameron, Yang, Chenxi, Verma, Abhinav, Chaudhuri, Swarat, Seshia, Sanjit A.
Linear Temporal Logic (LTL) offers a precise means for constraining the behavior of reinforcement learning agents. However, in many tasks, LTL is insufficient for task specification; LTL-constrained policy optimization, where the goal is to optimize a scalar reward under LTL constraints, is needed. Prior methods for this constrained problem are restricted to finite state spaces. In this work, we present Cycle Experience Replay (CyclER), a reward-shaping approach to this problem that allows continuous state and action spaces and the use of function approximations. CyclER guides a policy towards satisfaction by encouraging partial behaviors compliant with the LTL constraint, using the structure of the constraint. In doing so, it addresses the optimization challenges stemming from the sparse nature of LTL satisfaction. We evaluate CyclER in three continuous control domains. On these tasks, CyclER outperforms existing reward-shaping methods at finding performant and LTL-satisfying policies.
Eventual Discounting Temporal Logic Counterfactual Experience Replay
Voloshin, Cameron, Verma, Abhinav, Yue, Yisong
Linear temporal logic (LTL) offers a simplified way of specifying tasks for policy optimization that may otherwise be difficult to describe with scalar reward functions. However, the standard RL framework can be too myopic to find maximally LTL satisfying policies. This paper makes two contributions. First, we develop a new value-function based proxy, using a technique we call eventual discounting, under which one can find policies that satisfy the LTL specification with highest achievable probability. Second, we develop a new experience replay method for generating off-policy data from on-policy rollouts via counterfactual reasoning on different ways of satisfying the LTL specification. Our experiments, conducted in both discrete and continuous state-action spaces, confirm the effectiveness of our counterfactual experience replay approach.
Minimax Model Learning
Voloshin, Cameron, Jiang, Nan, Yue, Yisong
We present a novel off-policy loss function for learning a transition model in model-based reinforcement learning. Notably, our loss is derived from the off-policy policy evaluation objective with an emphasis on correcting distribution shift. Compared to previous model-based techniques, our approach allows for greater robustness under model misspecification or distribution shift induced by learning/evaluating policies that are distinct from the data-generating policy. We provide a theoretical analysis and show empirical improvements over existing model-based off-policy evaluation methods. We provide further analysis showing our loss can be used for off-policy optimization (OPO) and demonstrate its integration with more recent improvements in OPO.
Batch Policy Learning under Constraints
Le, Hoang M., Voloshin, Cameron, Yue, Yisong
When learning policies for real-world domains, two important questions arise: (i) how to efficiently use pre-collected off-policy, non-optimal behavior data; and (ii) how to mediate among different competing objectives and constraints. We thus study the problem of batch policy learning under multiple constraints, and offer a systematic solution. We first propose a flexible meta-algorithm that admits any batch reinforcement learning and online learning procedure as subroutines. We then present a specific algorithmic instantiation and provide performance guarantees for the main objective and all constraints. To certify constraint satisfaction, we propose a new and simple method for off-policy policy evaluation (OPE) and derive PAC-style bounds. Our algorithm achieves strong empirical results in different domains, including in a challenging problem of simulated car driving subject to multiple constraints such as lane keeping and smooth driving. We also show experimentally that our OPE method outperforms other popular OPE techniques on a standalone basis, especially in a high-dimensional setting.