Goto

Collaborating Authors

 Volkan Cevher



Stochastic Frank-Wolfe for Composite Convex Minimization

Neural Information Processing Systems

A broad class of convex optimization problems can be formulated as a semidefinite program (SDP), minimization of a convex function over the positive-semidefinite cone subject to some affine constraints. The majority of classical SDP solvers are designed for the deterministic setting where problem data is readily available. In this setting, generalized conditional gradient methods (aka Frank-Wolfe-type methods) provide scalable solutions by leveraging the so-called linear minimization oracle instead of the projection onto the semidefinite cone. Most problems in machine learning and modern engineering applications, however, contain some degree of stochasticity. In this work, we propose the first conditional-gradienttype method for solving stochastic optimization problems under affine constraints.





Stochastic Frank-Wolfe for Composite Convex Minimization

Neural Information Processing Systems

A broad class of convex optimization problems can be formulated as a semidefinite program (SDP), minimization of a convex function over the positive-semidefinite cone subject to some affine constraints. The majority of classical SDP solvers are designed for the deterministic setting where problem data is readily available. In this setting, generalized conditional gradient methods (aka Frank-Wolfe-type methods) provide scalable solutions by leveraging the so-called linear minimization oracle instead of the projection onto the semidefinite cone. Most problems in machine learning and modern engineering applications, however, contain some degree of stochasticity. In this work, we propose the first conditional-gradienttype method for solving stochastic optimization problems under affine constraints.


UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization

Neural Information Processing Systems

We propose a novel adaptive, accelerated algorithm for the stochastic constrained convex optimization setting. Our method, which is inspired by the Mirror-Prox method, simultaneously achieves the optimal rates for smooth/non-smooth problems with either deterministic/stochastic first-order oracles. This is done without any prior knowledge of the smoothness nor the noise properties of the problem. To the best of our knowledge, this is the first adaptive, unified algorithm that achieves the optimal rates in the constrained setting. We demonstrate the practical performance of our framework through extensive numerical experiments.


An Inexact Augmented Lagrangian Framework for Nonconvex Optimization with Nonlinear Constraints

Neural Information Processing Systems

We propose a practical inexact augmented Lagrangian method (iALM) for nonconvex problems with nonlinear constraints. We characterize the total computational complexity of our method subject to a verifiable geometric condition, which is closely related to the Polyak-Lojasiewicz and Mangasarian-Fromowitz conditions.


Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation

Neural Information Processing Systems

R), that treats Bayesian optimization (BO) and level-set estimation (LSE) with Gaussian processes in a unified fashion. The algorithm greedily shrinks a sum of truncated variances within a set of potential maximizers (BO) or unclassified points (LSE), which is updated based on confidence bounds.


Stochastic Three-Composite Convex Minimization

Neural Information Processing Systems

We propose a stochastic optimization method for the minimization of the sum of three convex functions, one of which has Lipschitz continuous gradient as well as restricted strong convexity. Our approach is most suitable in the setting where it is computationally advantageous to process smooth term in the decomposition with its stochastic gradient estimate and the other two functions separately with their proximal operators, such as doubly regularized empirical risk minimization problems. We prove the convergence characterization of the proposed algorithm in expectation under the standard assumptions for the stochastic gradient estimate of the smooth term. Our method operates in the primal space and can be considered as a stochastic extension of the three-operator splitting method. Numerical evidence supports the effectiveness of our method in real-world problems.