Voinea, Stephen
Trading robust representations for sample complexity through self-supervised visual experience
Tacchetti, Andrea, Voinea, Stephen, Evangelopoulos, Georgios
Learning in small sample regimes is among the most remarkable features of the human perceptual system. This ability is related to robustness to transformations, which is acquired through visual experience in the form of weak- or self-supervision during development. We explore the idea of allowing artificial systems to learn representations of visual stimuli through weak supervision prior to downstream supervised tasks. We introduce a novel loss function for representation learning using unlabeled image sets and video sequences, and experimentally demonstrate that these representations support one-shot learning and reduce the sample complexity of multiple recognition tasks. We establish the existence of a trade-off between the sizes of weakly supervised, automatically obtained from video sequences, and fully supervised data sets.
Trading robust representations for sample complexity through self-supervised visual experience
Tacchetti, Andrea, Voinea, Stephen, Evangelopoulos, Georgios
Learning in small sample regimes is among the most remarkable features of the human perceptual system. This ability is related to robustness to transformations, which is acquired through visual experience in the form of weak- or self-supervision during development. We explore the idea of allowing artificial systems to learn representations of visual stimuli through weak supervision prior to downstream supervised tasks. We introduce a novel loss function for representation learning using unlabeled image sets and video sequences, and experimentally demonstrate that these representations support one-shot learning and reduce the sample complexity of multiple recognition tasks. We establish the existence of a trade-off between the sizes of weakly supervised, automatically obtained from video sequences, and fully supervised data sets. Our results suggest that equivalence sets other than class labels, which are abundant in unlabeled visual experience, can be used for self-supervised learning of semantically relevant image embeddings.
Trading robust representations for sample complexity through self-supervised visual experience
Tacchetti, Andrea, Voinea, Stephen, Evangelopoulos, Georgios
Learning in small sample regimes is among the most remarkable features of the human perceptual system. This ability is related to robustness to transformations, which is acquired through visual experience in the form of weak- or self-supervision during development. We explore the idea of allowing artificial systems to learn representations of visual stimuli through weak supervision prior to downstream supervised tasks. We introduce a novel loss function for representation learning using unlabeled image sets and video sequences, and experimentally demonstrate that these representations support one-shot learning and reduce the sample complexity of multiple recognition tasks. We establish the existence of a trade-off between the sizes of weakly supervised, automatically obtained from video sequences, and fully supervised data sets. Our results suggest that equivalence sets other than class labels, which are abundant in unlabeled visual experience, can be used for self-supervised learning of semantically relevant image embeddings.
Discriminate-and-Rectify Encoders: Learning from Image Transformation Sets
Tacchetti, Andrea, Voinea, Stephen, Evangelopoulos, Georgios
The complexity of a learning task is increased by transformations in the input space that preserve class identity. Visual object recognition for example is affected by changes in viewpoint, scale, illumination or planar transformations. While drastically altering the visual appearance, these changes are orthogonal to recognition and should not be reflected in the representation or feature encoding used for learning. We introduce a framework for weakly supervised learning of image embeddings that are robust to transformations and selective to the class distribution, using sets of transforming examples (orbit sets), deep parametrizations and a novel orbit-based loss. The proposed loss combines a discriminative, contrastive part for orbits with a reconstruction error that learns to rectify orbit transformations. The learned embeddings are evaluated in distance metric-based tasks, such as one-shot classification under geometric transformations, as well as face verification and retrieval under more realistic visual variability. Our results suggest that orbit sets, suitably computed or observed, can be used for efficient, weakly-supervised learning of semantically relevant image embeddings.
Learning with Group Invariant Features: A Kernel Perspective.
Mroueh, Youssef, Voinea, Stephen, Poggio, Tomaso A.
We analyze in this paper a random feature map based on a theory of invariance (I-theory) introduced in [1]. More specifically, a group invariant signal signature is obtained through cumulative distributions of group-transformed random projections. Ouranalysis bridges invariant feature learning with kernel methods, as we show that this feature map defines an expected Haar-integration kernel that is invariant to the specified group action. We show how this nonlinear random feature mapapproximates this group invariant kernel uniformly on a set of N points. Moreover, we show that it defines a function space that is dense in the equivalent Invariant Reproducing Kernel Hilbert Space. Finally, we quantify error rates of the convergence of the empirical risk minimization, as well as the reduction in the sample complexity of a learning algorithm using such an invariant representation for signal classification, in a classical supervised learning setting.
Learning with Group Invariant Features: A Kernel Perspective
Mroueh, Youssef, Voinea, Stephen, Poggio, Tomaso
We analyze in this paper a random feature map based on a theory of invariance I-theory introduced recently. More specifically, a group invariant signal signature is obtained through cumulative distributions of group transformed random projections. Our analysis bridges invariant feature learning with kernel methods, as we show that this feature map defines an expected Haar integration kernel that is invariant to the specified group action. We show how this non-linear random feature map approximates this group invariant kernel uniformly on a set of $N$ points. Moreover, we show that it defines a function space that is dense in the equivalent Invariant Reproducing Kernel Hilbert Space. Finally, we quantify error rates of the convergence of the empirical risk minimization, as well as the reduction in the sample complexity of a learning algorithm using such an invariant representation for signal classification, in a classical supervised learning setting.
A Deep Representation for Invariance And Music Classification
Zhang, Chiyuan, Evangelopoulos, Georgios, Voinea, Stephen, Rosasco, Lorenzo, Poggio, Tomaso
Representations in the auditory cortex might be based on mechanisms similar to the visual ventral stream; modules for building invariance to transformations and multiple layers for compositionality and selectivity. In this paper we propose the use of such computational modules for extracting invariant and discriminative audio representations. Building on a theory of invariance in hierarchical architectures, we propose a novel, mid-level representation for acoustical signals, using the empirical distributions of projections on a set of templates and their transformations. Under the assumption that, by construction, this dictionary of templates is composed from similar classes, and samples the orbit of variance-inducing signal transformations (such as shift and scale), the resulting signature is theoretically guaranteed to be unique, invariant to transformations and stable to deformations. Modules of projection and pooling can then constitute layers of deep networks, for learning composite representations. We present the main theoretical and computational aspects of a framework for unsupervised learning of invariant audio representations, empirically evaluated on music genre classification.