Vogginger, Bernhard
Language Modeling on a SpiNNaker 2 Neuromorphic Chip
Nazeer, Khaleelulla Khan, Schöne, Mark, Mukherji, Rishav, Vogginger, Bernhard, Mayr, Christian, Kappel, David, Subramoney, Anand
As large language models continue to scale in size rapidly, so too does the computational power required to run them. Event-based networks on neuromorphic devices offer a potential way to reduce energy consumption for inference significantly. However, to date, most event-based networks that can run on neuromorphic hardware, including spiking neural networks (SNNs), have not achieved task performance even on par with LSTM models for language modeling. As a result, language modeling on neuromorphic devices has seemed a distant prospect. In this work, we demonstrate the first-ever implementation of a language model on a neuromorphic device - specifically the SpiNNaker 2 chip - based on a recently published event-based architecture called the EGRU. SpiNNaker 2 is a many-core neuromorphic chip designed for large-scale asynchronous processing, while the EGRU is architected to leverage such hardware efficiently while maintaining competitive task performance. This implementation marks the first time a neuromorphic language model matches LSTMs, setting the stage for taking task performance to the level of large language models. We also demonstrate results on a gesture recognition task based on inputs from a DVS camera. Overall, our results showcase the feasibility of this neuro-inspired neural network in hardware, highlighting significant gains versus conventional hardware in energy efficiency for the common use case of single batch inference.
SpiNNaker2: A Large-Scale Neuromorphic System for Event-Based and Asynchronous Machine Learning
Gonzalez, Hector A., Huang, Jiaxin, Kelber, Florian, Nazeer, Khaleelulla Khan, Langer, Tim, Liu, Chen, Lohrmann, Matthias, Rostami, Amirhossein, Schöne, Mark, Vogginger, Bernhard, Wunderlich, Timo C., Yan, Yexin, Akl, Mahmoud, Mayr, Christian
The joint progress of artificial neural networks (ANNs) and domain specific hardware accelerators such as GPUs and TPUs took over many domains of machine learning research. This development is accompanied by a rapid growth of the required computational demands for larger models and more data. Concurrently, emerging properties of foundation models such as in-context learning drive new opportunities for machine learning applications. However, the computational cost of such applications is a limiting factor of the technology in data centers, and more importantly in mobile devices and edge systems. To mediate the energy footprint and non-trivial latency of contemporary systems, neuromorphic computing systems deeply integrate computational principles of neurobiological systems by leveraging low-power analog and digital technologies. SpiNNaker2 is a digital neuromorphic chip developed for scalable machine learning. The event-based and asynchronous design of SpiNNaker2 allows the composition of large-scale systems involving thousands of chips. This work features the operating principles of SpiNNaker2 systems, outlining the prototype of novel machine learning applications. These applications range from ANNs over bio-inspired spiking neural networks to generalized event-based neural networks. With the successful development and deployment of SpiNNaker2, we aim to facilitate the advancement of event-based and asynchronous algorithms for future generations of machine learning systems.
NeuroBench: Advancing Neuromorphic Computing through Collaborative, Fair and Representative Benchmarking
Yik, Jason, Ahmed, Soikat Hasan, Ahmed, Zergham, Anderson, Brian, Andreou, Andreas G., Bartolozzi, Chiara, Basu, Arindam, Blanken, Douwe den, Bogdan, Petrut, Bohte, Sander, Bouhadjar, Younes, Buckley, Sonia, Cauwenberghs, Gert, Corradi, Federico, de Croon, Guido, Danielescu, Andreea, Daram, Anurag, Davies, Mike, Demirag, Yigit, Eshraghian, Jason, Forest, Jeremy, Furber, Steve, Furlong, Michael, Gilra, Aditya, Indiveri, Giacomo, Joshi, Siddharth, Karia, Vedant, Khacef, Lyes, Knight, James C., Kriener, Laura, Kubendran, Rajkumar, Kudithipudi, Dhireesha, Lenz, Gregor, Manohar, Rajit, Mayr, Christian, Michmizos, Konstantinos, Muir, Dylan, Neftci, Emre, Nowotny, Thomas, Ottati, Fabrizio, Ozcelikkale, Ayca, Pacik-Nelson, Noah, Panda, Priyadarshini, Pao-Sheng, Sun, Payvand, Melika, Pehle, Christian, Petrovici, Mihai A., Posch, Christoph, Renner, Alpha, Sandamirskaya, Yulia, Schaefer, Clemens JS, van Schaik, André, Schemmel, Johannes, Schuman, Catherine, Seo, Jae-sun, Sheik, Sadique, Shrestha, Sumit Bam, Sifalakis, Manolis, Sironi, Amos, Stewart, Kenneth, Stewart, Terrence C., Stratmann, Philipp, Tang, Guangzhi, Timcheck, Jonathan, Verhelst, Marian, Vineyard, Craig M., Vogginger, Bernhard, Yousefzadeh, Amirreza, Zhou, Biyan, Zohora, Fatima Tuz, Frenkel, Charlotte, Reddi, Vijay Janapa
The field of neuromorphic computing holds great promise in terms of advancing computing efficiency and capabilities by following brain-inspired principles. However, the rich diversity of techniques employed in neuromorphic research has resulted in a lack of clear standards for benchmarking, hindering effective evaluation of the advantages and strengths of neuromorphic methods compared to traditional deep-learning-based methods. This paper presents a collaborative effort, bringing together members from academia and the industry, to define benchmarks for neuromorphic computing: NeuroBench. The goals of NeuroBench are to be a collaborative, fair, and representative benchmark suite developed by the community, for the community. In this paper, we discuss the challenges associated with benchmarking neuromorphic solutions, and outline the key features of NeuroBench. We believe that NeuroBench will be a significant step towards defining standards that can unify the goals of neuromorphic computing and drive its technological progress. Please visit neurobench.ai for the latest updates on the benchmark tasks and metrics.
Pattern representation and recognition with accelerated analog neuromorphic systems
Petrovici, Mihai A., Schmitt, Sebastian, Klähn, Johann, Stöckel, David, Schroeder, Anna, Bellec, Guillaume, Bill, Johannes, Breitwieser, Oliver, Bytschok, Ilja, Grübl, Andreas, Güttler, Maurice, Hartel, Andreas, Hartmann, Stephan, Husmann, Dan, Husmann, Kai, Jeltsch, Sebastian, Karasenko, Vitali, Kleider, Mitja, Koke, Christoph, Kononov, Alexander, Mauch, Christian, Müller, Eric, Müller, Paul, Partzsch, Johannes, Pfeil, Thomas, Schiefer, Stefan, Scholze, Stefan, Subramoney, Anand, Thanasoulis, Vasilis, Vogginger, Bernhard, Legenstein, Robert, Maass, Wolfgang, Schüffny, René, Mayr, Christian, Schemmel, Johannes, Meier, Karlheinz
Despite being originally inspired by the central nervous system, artificial neural networks have diverged from their biological archetypes as they have been remodeled to fit particular tasks. In this paper, we review several possibilites to reverse map these architectures to biologically more realistic spiking networks with the aim of emulating them on fast, low-power neuromorphic hardware. Since many of these devices employ analog components, which cannot be perfectly controlled, finding ways to compensate for the resulting effects represents a key challenge. Here, we discuss three different strategies to address this problem: the addition of auxiliary network components for stabilizing activity, the utilization of inherently robust architectures and a training method for hardware-emulated networks that functions without perfect knowledge of the system's dynamics and parameters. For all three scenarios, we corroborate our theoretical considerations with experimental results on accelerated analog neuromorphic platforms.