Vitercik, Ellen
Generalization Guarantees for Multi-item Profit Maximization: Pricing, Auctions, and Randomized Mechanisms
Balcan, Maria-Florina, Sandholm, Tuomas, Vitercik, Ellen
We study multi-item profit maximization when there is an underlying distribution over buyers' values. In practice, a full description of the distribution is typically unavailable, so we study the setting where the mechanism designer only has samples from the distribution. If the designer uses the samples to optimize over a complex mechanism class -- such as the set of all multi-item, multi-buyer mechanisms -- a mechanism may have high average profit over the samples but low expected profit. This raises the central question of this paper: how many samples are sufficient to ensure that a mechanism's average profit is close to its expected profit? To answer this question, we uncover structure shared by many pricing, auction, and lottery mechanisms: for any set of buyers' values, profit is piecewise linear in the mechanism's parameters. Using this structure, we prove new bounds for mechanism classes not yet studied in the sample-based mechanism design literature and match or improve over the best-known guarantees for many classes.
Improved Learning Bounds for Branch-and-Cut
Balcan, Maria-Florina, Prasad, Siddharth, Sandholm, Tuomas, Vitercik, Ellen
Branch-and-cut is the most widely used algorithm for solving integer programs, employed by commercial solvers like CPLEX and Gurobi. Branch-and-cut has a wide variety of tunable parameters that have a huge impact on the size of the search tree that it builds, but are challenging to tune by hand. An increasingly popular approach is to use machine learning to tune these parameters: using a training set of integer programs from the application domain at hand, the goal is to find a configuration with strong predicted performance on future, unseen integer programs from the same domain. If the training set is too small, a configuration may have good performance over the training set but poor performance on future integer programs. In this paper, we prove sample complexity guarantees for this procedure, which bound how large the training set should be to ensure that for any configuration, its average performance over the training set is close to its expected future performance. Our guarantees apply to parameters that control the most important aspects of branch-and-cut: node selection, branching constraint selection, and cutting plane selection, and are sharper and more general than those found in prior research.
Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond
Balcan, Maria-Florina, Prasad, Siddharth, Sandholm, Tuomas, Vitercik, Ellen
Cutting-plane methods have enabled remarkable successes in integer programming over the last few decades. State-of-the-art solvers integrate a myriad of cutting-plane techniques to speed up the underlying tree-search algorithm used to find optimal solutions. In this paper we prove the first guarantees for learning high-performing cut-selection policies tailored to the instance distribution at hand using samples. We first bound the sample complexity of learning cutting planes from the canonical family of Chv\'atal-Gomory cuts. Our bounds handle any number of waves of any number of cuts and are fine tuned to the magnitudes of the constraint coefficients. Next, we prove sample complexity bounds for more sophisticated cut selection policies that use a combination of scoring rules to choose from a family of cuts. Finally, beyond the realm of cutting planes for integer programming, we develop a general abstraction of tree search that captures key components such as node selection and variable selection. For this abstraction, we bound the sample complexity of learning a good policy for building the search tree.
Generalization in portfolio-based algorithm selection
Balcan, Maria-Florina, Sandholm, Tuomas, Vitercik, Ellen
Portfolio-based algorithm selection has seen tremendous practical success over the past two decades. This algorithm configuration procedure works by first selecting a portfolio of diverse algorithm parameter settings, and then, on a given problem instance, using an algorithm selector to choose a parameter setting from the portfolio with strong predicted performance. Oftentimes, both the portfolio and the algorithm selector are chosen using a training set of typical problem instances from the application domain at hand. In this paper, we provide the first provable guarantees for portfolio-based algorithm selection. We analyze how large the training set should be to ensure that the resulting algorithm selector's average performance over the training set is close to its future (expected) performance. This involves analyzing three key reasons why these two quantities may diverge: 1) the learning-theoretic complexity of the algorithm selector, 2) the size of the portfolio, and 3) the learning-theoretic complexity of the algorithm's performance as a function of its parameters. We introduce an end-to-end learning-theoretic analysis of the portfolio construction and algorithm selection together. We prove that if the portfolio is large, overfitting is inevitable, even with an extremely simple algorithm selector. With experiments, we illustrate a tradeoff exposed by our theoretical analysis: as we increase the portfolio size, we can hope to include a well-suited parameter setting for every possible problem instance, but it becomes impossible to avoid overfitting.
Private Optimization Without Constraint Violations
Medina, Andrés Muñoz, Syed, Umar, Vassilvitskii, Sergei, Vitercik, Ellen
We study the problem of differentially private optimization with linear constraints when the right-hand-side of the constraints depends on private data. This type of problem appears in many applications, especially resource allocation. Previous research provided solutions that retained privacy but sometimes violated the constraints. In many settings, however, the constraints cannot be violated under any circumstances. To address this hard requirement, we present an algorithm that releases a nearly-optimal solution satisfying the constraints with probability 1. We also prove a lower bound demonstrating that the difference between the objective value of our algorithm's solution and the optimal solution is tight up to logarithmic factors among all differentially private algorithms. We conclude with experiments demonstrating that our algorithm can achieve nearly optimal performance while preserving privacy.
Refined bounds for algorithm configuration: The knife-edge of dual class approximability
Balcan, Maria-Florina, Sandholm, Tuomas, Vitercik, Ellen
Automating algorithm configuration is growing increasingly necessary as algorithms come with more and more tunable parameters. It is common to tune parameters using machine learning, optimizing performance metrics such as runtime and solution quality. The training set consists of problem instances from the specific domain at hand. We investigate a fundamental question about these techniques: how large should the training set be to ensure that a parameter's average empirical performance over the training set is close to its expected, future performance? We answer this question for algorithm configuration problems that exhibit a widely-applicable structure: the algorithm's performance as a function of its parameters can be approximated by a "simple" function. We show that if this approximation holds under the L-infinity norm, we can provide strong sample complexity bounds. On the flip side, if the approximation holds only under the L-p norm for p smaller than infinity, it is not possible to provide meaningful sample complexity bounds in the worst case. We empirically evaluate our bounds in the context of integer programming, one of the most powerful tools in computer science. Via experiments, we obtain sample complexity bounds that are up to 700 times smaller than the previously best-known bounds.
How much data is sufficient to learn high-performing algorithms?
Balcan, Maria-Florina, DeBlasio, Dan, Dick, Travis, Kingsford, Carl, Sandholm, Tuomas, Vitercik, Ellen
Algorithms for scientific analysis typically have tunable parameters that significantly influence computational efficiency and solution quality. If a parameter setting leads to strong algorithmic performance on average over a set of typical problem instances, that parameter setting---ideally---will perform well in the future. However, if the set of typical problem instances is small, average performance will not generalize to future performance. This raises the question: how large should this set be? We answer this question for any algorithm satisfying an easy-to-describe, ubiquitous property: its performance is a piecewise-structured function of its parameters. We are the first to provide a unified sample complexity framework for algorithm parameter configuration; prior research followed case-by-case analyses. We present applications from diverse domains, including biology, political science, and economics.
Learning to Optimize Computational Resources: Frugal Training with Generalization Guarantees
Balcan, Maria-Florina, Sandholm, Tuomas, Vitercik, Ellen
Algorithms typically come with tunable parameters that have a considerable impact on the computational resources they consume. Too often, practitioners must hand-tune the parameters, a tedious and error-prone task. A recent line of research provides algorithms that return nearly-optimal parameters from within a finite set. These algorithms can be used when the parameter space is infinite by providing as input a random sample of parameters. This data-independent discretization, however, might miss pockets of nearly-optimal parameters: prior research has presented scenarios where the only viable parameters lie within an arbitrarily small region. We provide an algorithm that learns a finite set of promising parameters from within an infinite set. Our algorithm can help compile a configuration portfolio, or it can be used to select the input to a configuration algorithm for finite parameter spaces. Our approach applies to any configuration problem that satisfies a simple yet ubiquitous structure: the algorithm's performance is a piecewise constant function of its parameters. Prior research has exhibited this structure in domains from integer programming to clustering. For these types of combinatorial problems, this is the first configuration algorithm beyond exhaustive search whose output provably competes with the best parameters from an infinite space.
Learning to Prune: Speeding up Repeated Computations
Alabi, Daniel, Kalai, Adam Tauman, Ligett, Katrina, Musco, Cameron, Tzamos, Christos, Vitercik, Ellen
It is common to encounter situations where one must solve a sequence of similar computational problems. Running a standard algorithm with worst-case runtime guarantees on each instance will fail to take advantage of valuable structure shared across the problem instances. For example, when a commuter drives from work to home, there are typically only a handful of routes that will ever be the shortest path. A naive algorithm that does not exploit this common structure may spend most of its time checking roads that will never be in the shortest path. More generally, we can often ignore large swaths of the search space that will likely never contain an optimal solution. We present an algorithm that learns to maximally prune the search space on repeated computations, thereby reducing runtime while provably outputting the correct solution each period with high probability. Our algorithm employs a simple explore-exploit technique resembling those used in online algorithms, though our setting is quite different. We prove that, with respect to our model of pruning search spaces, our approach is optimal up to constant factors. Finally, we illustrate the applicability of our model and algorithm to three classic problems: shortest-path routing, string search, and linear programming. We present experiments confirming that our simple algorithm is effective at significantly reducing the runtime of solving repeated computations.
Learning-Theoretic Foundations of Algorithm Configuration for Combinatorial Partitioning Problems
Balcan, Maria-Florina, Nagarajan, Vaishnavh, Vitercik, Ellen, White, Colin
Max-cut, clustering, and many other partitioning problems that are of significant importance to machine learning and other scientific fields are NP-hard, a reality that has motivated researchers to develop a wealth of approximation algorithms and heuristics. Although the best algorithm to use typically depends on the specific application domain, a worst-case analysis is often used to compare algorithms. This may be misleading if worst-case instances occur infrequently, and thus there is a demand for optimization methods which return the algorithm configuration best suited for the given application's typical inputs. We address this problem for clustering, max-cut, and other partitioning problems, such as integer quadratic programming, by designing computationally efficient and sample efficient learning algorithms which receive samples from an application-specific distribution over problem instances and learn a partitioning algorithm with high expected performance. Our algorithms learn over common integer quadratic programming and clustering algorithm families: SDP rounding algorithms and agglomerative clustering algorithms with dynamic programming. For our sample complexity analysis, we provide tight bounds on the pseudodimension of these algorithm classes, and show that surprisingly, even for classes of algorithms parameterized by a single parameter, the pseudo-dimension is superconstant. In this way, our work both contributes to the foundations of algorithm configuration and pushes the boundaries of learning theory, since the algorithm classes we analyze consist of multi-stage optimization procedures and are significantly more complex than classes typically studied in learning theory.