Goto

Collaborating Authors

 Vincent Michalski


Towards Deep Conversational Recommendations

Neural Information Processing Systems

There has been growing interest in using neural networks and deep learning techniques to create dialogue systems. Conversational recommendation is an interesting setting for the scientific exploration of dialogue with natural language as the associated discourse involves goal-driven dialogue that often transforms naturally into more free-form chat. This paper provides two contributions. First, until now there has been no publicly available large-scale dataset consisting of real-world dialogues centered around recommendations.


Modeling Deep Temporal Dependencies with Recurrent Grammar Cells""

Neural Information Processing Systems

We propose modeling time series by representing the transformations that take a frame at time t to a frame at time t+1. To this end we show how a bi-linear model of transformations, such as a gated autoencoder, can be turned into a recurrent network, by training it to predict future frames from the current one and the inferred transformation using backprop-through-time. We also show how stacking multiple layers of gating units in a recurrent pyramid makes it possible to represent the "syntax" of complicated time series, and that it can outperform standard recurrent neural networks in terms of prediction accuracy on a variety of tasks.


Towards Deep Conversational Recommendations

Neural Information Processing Systems

There has been growing interest in using neural networks and deep learning techniques to create dialogue systems. Conversational recommendation is an interesting setting for the scientific exploration of dialogue with natural language as the associated discourse involves goal-driven dialogue that often transforms naturally into more free-form chat. This paper provides two contributions. First, until now there has been no publicly available large-scale dataset consisting of real-world dialogues centered around recommendations.