Goto

Collaborating Authors

 Vilaplana, Verónica


Layer-wise training for self-supervised learning on graphs

arXiv.org Artificial Intelligence

End-to-end training of graph neural networks (GNN) on large graphs presents several memory and computational challenges, and limits the application to shallow architectures as depth exponentially increases the memory and space complexities. In this manuscript, we propose Layer-wise Regularized Graph Infomax, an algorithm to train GNNs layer by layer in a self-supervised manner. We decouple the feature propagation and feature transformation carried out by GNNs to learn node representations in order to derive a loss function based on the prediction of future inputs. We evaluate the algorithm in inductive large graphs and show similar performance to other end to end methods and a substantially increased efficiency, which enables the training of more sophisticated models in one single device. We also show that our algorithm avoids the oversmoothing of the representations, another common challenge of deep GNNs.


Feature propagation as self-supervision signals on graphs

arXiv.org Artificial Intelligence

Self-supervised learning is gaining considerable attention as a solution to avoid the requirement of extensive annotations in representation learning on graphs. Current algorithms are based on contrastive learning, which is computation an memory expensive, and the assumption of invariance under certain graph augmentations. However, graph transformations such as edge sampling may modify the semantics of the data so that the iinvariance assumption may be incorrect. We introduce Regularized Graph Infomax (RGI), a simple yet effective framework for node level self-supervised learning that trains a graph neural network encoder by maximizing the mutual information between output node embeddings and their propagation through the graph, which encode the nodes' local and global context, respectively. RGI do not use graph data augmentations but instead generates self-supervision signals with feature propagation, is non-contrastive and does not depend on a two branch architecture. We run RGI on both transductive and inductive settings with popular graph benchmarks and show that it can achieve state-of-the-art performance regardless of its simplicity.


SurvLIMEpy: A Python package implementing SurvLIME

arXiv.org Artificial Intelligence

In this paper we present SurvLIMEpy, an open-source Python package that implements the SurvLIME algorithm. This method allows to compute local feature importance for machine learning algorithms designed for modelling Survival Analysis data. Our implementation takes advantage of the parallelisation paradigm as all computations are performed in a matrix-wise fashion which speeds up execution time. Additionally, SurvLIMEpy assists the user with visualization tools to better understand the result of the algorithm. The package supports a wide variety of survival models, from the Cox Proportional Hazards Model to deep learning models such as DeepHit or DeepSurv. Two types of experiments are presented in this paper. First, by means of simulated data, we study the ability of the algorithm to capture the importance of the features. Second, we use three open source survival datasets together with a set of survival algorithms in order to demonstrate how SurvLIMEpy behaves when applied to different models.


Cascaded V-Net using ROI masks for brain tumor segmentation

arXiv.org Machine Learning

In this work we approach the brain tumor segmentation problem with a cascade of two CNNs inspired in the V-Net architecture \cite{VNet}, reformulating residual connections and making use of ROI masks to constrain the networks to train only on relevant voxels. This architecture allows dense training on problems with highly skewed class distributions, such as brain tumor segmentation, by focusing training only on the vecinity of the tumor area. We report results on BraTS2017 Training and Validation sets.


Leishmaniasis Parasite Segmentation and Classification using Deep Learning

arXiv.org Artificial Intelligence

Leishmaniasis is considered a neglected disease that causes thousands of deaths annually in some tropical and subtropical countries. There are various techniques to diagnose leishmaniasis of which manual microscopy is considered to be the gold standard. There is a need for the development of automatic techniques that are able to detect parasites in a robust and unsupervised manner. In this paper we present a procedure for automatizing the detection process based on a deep learning approach. We train a U-net model that successfully segments leismania parasites and classifies them into promastigotes, amastigotes and adhered parasites.


3D Convolutional Neural Networks for Brain Tumor Segmentation: A Comparison of Multi-resolution Architectures

arXiv.org Machine Learning

This paper analyzes the use of 3D Convolutional Neural Networks for brain tumor segmentation in MR images. We address the problem using three different architectures that combine fine and coarse features to obtain the final segmentation. We compare three different networks that use multi-resolution features in terms of both design and performance and we show that they improve their single-resolution counterparts.