Vijayanarasimhan, Sudheendra
IC3: Image Captioning by Committee Consensus
Chan, David M., Myers, Austin, Vijayanarasimhan, Sudheendra, Ross, David A., Canny, John
If you ask a human to describe an image, they might do so in a thousand different ways. Traditionally, image captioning models are trained to generate a single "best" (most like a reference) image caption. Unfortunately, doing so encourages captions that are "informationally impoverished," and focus on only a subset of the possible details, while ignoring other potentially useful information in the scene. In this work, we introduce a simple, yet novel, method: "Image Captioning by Committee Consensus" (IC3), designed to generate a single caption that captures high-level details from several annotator viewpoints. Humans rate captions produced by IC3 at least as helpful as baseline SOTA models more than two thirds of the time, and IC3 can improve the performance of SOTA automated recall systems by up to 84%, outperforming single human-generated reference captions, and indicating significant improvements over SOTA approaches for visual description. Code is available at https://davidmchan.github.io/caption-by-committee/
What's in a Caption? Dataset-Specific Linguistic Diversity and Its Effect on Visual Description Models and Metrics
Chan, David M., Myers, Austin, Vijayanarasimhan, Sudheendra, Ross, David A., Seybold, Bryan, Canny, John F.
While there have been significant gains in the field of automated video description, the generalization performance of automated description models to novel domains remains a major barrier to using these systems in the real world. Most visual description methods are known to capture and exploit patterns in the training data leading to evaluation metric increases, but what are those patterns? In this work, we examine several popular visual description datasets, and capture, analyze, and understand the dataset-specific linguistic patterns that models exploit but do not generalize to new domains. At the token level, sample level, and dataset level, we find that caption diversity is a major driving factor behind the generation of generic and uninformative captions. We further show that state-of-the-art models even outperform held-out ground truth captions on modern metrics, and that this effect is an artifact of linguistic diversity in datasets. Understanding this linguistic diversity is key to building strong captioning models, we recommend several methods and approaches for maintaining diversity in the collection of new data, and dealing with the consequences of limited diversity when using current models and metrics.
Hashing Hyperplane Queries to Near Points with Applications to Large-Scale Active Learning
Jain, Prateek, Vijayanarasimhan, Sudheendra, Grauman, Kristen
We consider the problem of retrieving the database points nearest to a given {\em hyperplane} query without exhaustively scanning the database. We propose two hashing-based solutions. Our first approach maps the data to two-bit binary keys that are locality-sensitive for the angle between the hyperplane normal and a database point. Our second approach embeds the data into a vector space where the Euclidean norm reflects the desired distance between the original points and hyperplane query. Both use hashing to retrieve near points in sub-linear time.
End-to-End Learning of Semantic Grasping
Jang, Eric, Vijayanarasimhan, Sudheendra, Pastor, Peter, Ibarz, Julian, Levine, Sergey
We consider the task of semantic robotic grasping, in which a robot picks up an object of a user-specified class using only monocular images. Inspired by the two-stream hypothesis of visual reasoning, we present a semantic grasping framework that learns object detection, classification, and grasp planning in an end-to-end fashion. A "ventral stream" recognizes object class while a "dorsal stream" simultaneously interprets the geometric relationships necessary to execute successful grasps. We leverage the autonomous data collection capabilities of robots to obtain a large self-supervised dataset for training the dorsal stream, and use semi-supervised label propagation to train the ventral stream with only a modest amount of human supervision. We experimentally show that our approach improves upon grasping systems whose components are not learned end-to-end, including a baseline method that uses bounding box detection. Furthermore, we show that jointly training our model with auxiliary data consisting of non-semantic grasping data, as well as semantically labeled images without grasp actions, has the potential to substantially improve semantic grasping performance.
Hashing Hyperplane Queries to Near Points with Applications to Large-Scale Active Learning
Jain, Prateek, Vijayanarasimhan, Sudheendra, Grauman, Kristen
We consider the problem of retrieving the database points nearest to a given {\em hyperplane} query without exhaustively scanning the database. We propose two hashing-based solutions. Our first approach maps the data to two-bit binary keys that are locality-sensitive for the angle between the hyperplane normal and a database point. Our second approach embeds the data into a vector space where the Euclidean norm reflects the desired distance between the original points and hyperplane query. Both use hashing to retrieve near points in sub-linear time. Our first method's preprocessing stage is more efficient, while the second has stronger accuracy guarantees. We apply both to pool-based active learning: taking the current hyperplane classifier as a query, our algorithm identifies those points (approximately) satisfying the well-known minimal distance-to-hyperplane selection criterion. We empirically demonstrate our methods' tradeoffs, and show that they make it practical to perform active selection with millions of unlabeled points.
Multi-Level Active Prediction of Useful Image Annotations for Recognition
Vijayanarasimhan, Sudheendra, Grauman, Kristen
We introduce a framework for actively learning visual categories from a mixture of weakly and strongly labeled image examples. We propose to allow the category-learner to strategically choose what annotations it receives---based on both the expected reduction in uncertainty as well as the relative costs of obtaining each annotation. We construct a multiple-instance discriminative classifier based on the initial training data. Then all remaining unlabeled and weakly labeled examples are surveyed to actively determine which annotation ought to be requested next. After each request, the current classifier is incrementally updated. Unlike previous work, our approach accounts for the fact that the optimal use of manual annotation may call for a combination of labels at multiple levels of granularity (e.g., a full segmentation on some images and a present/absent flag on others). As a result, it is possible to learn more accurate category models with a lower total expenditure of manual annotation effort.